Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT
\(\Leftrightarrow20y^2-150=3x\left(2y-5\right)\)
\(\Leftrightarrow3x=\frac{20y^2-150}{2y-5}\)
De \(x\in Z\Rightarrow\frac{20y^2-150}{2y-5}\in Z\)
Dat \(M=\frac{20y^2-150}{2y-5}=5\left(2y+5\right)-\frac{25}{2y-5}\)
De \(3x=M=10y+25-\frac{25}{2y-5}\in Z\Rightarrow\frac{25}{2y-5}\in Z\Rightarrow2y-5\in\left\{-5;-1;1;5\right\}\)
Ta tim duoc
\(y_1=0;y_2=2;y_3=3;y_4=5\)
\(\Rightarrow x_1=x_3=30;x_2=70;x_4=70\)
cũng quy đồng, bạn đưa về pt :
6x -xy +6y +1 = 0
hay x( 6-y ) = -1-6y
x, y nguyên :
-1-6y chia hết cho 6-y
hay 6.(6-y) - 37 chia hết cho 6-y
vậy 6-y là ước của 37
bạn lại lập bảng ( hay giải từng cái cũng được ) tìm ra y , sau đó tìm x
( nhớ thử lại , và lấy x, y nguyên )
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
x3 + y3 + 1 = 6xy
<=> (x + y)3 - 3xy(x + y) + 1 = 6xy
<=> (x + y)3 + 8 - 3xy(x + y + 2) = 7
<=> (x + y + 2)(x2 - xy + y2 + 2x + 2y + 4) = 7
Đến đây bạn tự giải tiếp
x3 - 6xy + y3 = 8
<=> (x + y)3 - 3xy(x + y) - 6xy + 8 = 16
<=> (x + y + 2)(x2 + y2 - xy - 2x - 2y + 4) = 16
<=> \(\left(x+y+2\right)\left[\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\right]=16\)
Nhận thấy \(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\ge0\)
=> x + y + 2 > 0
Khi đó 16 = 1.16 = 2.8 = 4.4
Lập bảng
x + y + 2 | 1 | 16 | 4 | 2 | 8 | |
\(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\) | 16 | 1 | 4 | 8 | 2 | |
x | ||||||
y | | |
Đến đó bạn thế x qua y rồi làm tiếp nha
Ta có: 9x2 − 15x + 3 = 0 (a = 9; b = −15; c = 3)
⇒ ∆ = b2 – 4ac = (−15)2 – 4.9.3 = 117 > 0
nên phương trình có hai nghiệm phân biệt
Đáp án cần chọn là: C
\(20y^2-6xy=150-15x\)
\(\Leftrightarrow6xy-15x=20y^2-150\)
\(\Leftrightarrow3x\left(2y-5\right)=5\left(4y^2-25\right)-25\)
\(\Leftrightarrow3x\left(2y-5\right)=\left(2y-5\right)\left(10y+25\right)-25\)
\(\Leftrightarrow\left(2y-5\right)\left(10y+25-3x\right)=25\)
Đến đây thì dễ
P/s: Nguồn: Trên mạng :)
Cảm ơn bạn nha !!! 😊