Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow28\left(49y^4+98y^3+49y^2\right)=4y+9\\ \Leftrightarrow1372y^4+2744y^3+1372y^2-4y-9=0\\ \Leftrightarrow\left(14y^2+12y-1\right)\left(98y^2+112y+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}14y^2+12y-1=0\\98y^2+112y+9=0\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow14y^2+12y-1=0\\ \Leftrightarrow y=\dfrac{5\sqrt{2}-6}{14}\left(y>0\right)\)
Phân tích từ dòng 2:
\(\Leftrightarrow1372y^4+1176y^3-98y^2+1568y^3+1344y^2-112y+126y^2+108y-9=0\\ \Leftrightarrow98y^2\left(14y^2+12y-1\right)+112y\left(14y^2+12y-1\right)+9\left(14y^2+12y-1\right)=0\\ \Leftrightarrow\left(14y^2+12y-1\right)\left(98y^2+112y+9\right)=0\)
`7x^2+7x=\sqrt{(4x+9)/28}`
Nhân 2 vế của pt cho 28 ta có:
`196x^2+196x=2\sqrt{28x+63}`
`<=>196x^2+224x+64=28x+63+2\sqrt{28x+63}+1`
`<=>(14x+8)^2=(\sqrt{28x+63}+1)^2`
Đến đây chai 2 trường hợp rồi giải thôi :D
Không biết bạn có gõ đúng đề cả 2 câu không ? Câu 2 không có nghiệm nguyên dương nhé bạn. Bạn xem lại.
ap dung bdt co si ta co:\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}>=3\sqrt[3]{xyz}\)
=>\(3>=3\sqrt[3]{xyz}\)
=>\(1>=\sqrt[3]{xyz}\)
=>\(1>=xyz\)
dau bang xay ra khi \(\frac{xy}{z}=\frac{yz}{x}=\frac{xz}{y}\)=>x=y=z=1
vay x=y=z=1
<=> (x-4)(x-3) = \(\sqrt{3}\)(y+1)
Nếu y là số nguyên khác -1 thì y+1 là số nguyên; \(\sqrt{3}\)là số vô tỉ nên \(\sqrt{3}\left(y+1\right)\)là số vô tỉ
mà x-4 và x-3 đều là số nguyên nên (x-3)(x-4) là số nguyên => vô lý
vậy y = -1 => (x-4)(x-3)=0 <=> x=4 hoặc x= 3
vậy có 2 nghiêm thỏa mãn (x;y) = (4;-1); (x;y) = (3;-1)
$7x^2+7x=\sqrt{\frac{4x+9}{28}}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
ngại làm tham khảo di Giải phương trình: $7x^2+7x=\sqrt{\frac{4x+9}{28}}$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
giải pt: 7x^2 + 7x = căn[(4x+9)/28] 5* .? | Yahoo Hỏi & Đáp
Giải PT $7x^2+7x= \sqrt{\frac{4x+9}{28}}$ | Diễn đàn HOCMAI - Cộng đồng học tập lớn nhất Việt Nam
chắc đủ rồi :v
Giải:
\(PT\Leftrightarrow28\left(49x^4+98x^3+49x^2\right)=4x+9\)
\(\Leftrightarrow1372x^4+4116x^2-4x-9=0\)
\(\Leftrightarrow\left(14x^2+12x-1\right)\left(98x^2+112x+9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}14x^2+12x-1=0\left(1\right)\\98x^2+112x+9=0\left(2\right)\end{cases}}\)
Giải hai phương trình \(\left(1\right);\left(2\right)\) ta được 4 nghiệm nhưng chỉ có 1 nghiệm TMĐK là \(x=\frac{5\sqrt{2}-6}{14}\)
đặt \(\sqrt{\frac{4x+9}{28}}=y+\frac{1}{2}\)(\(y\ge-\frac{1}{2}\))
<=> \(\frac{4x+9}{28}=y^2+y+\frac{1}{4}\)
<=. \(7y^2+7y=x+\frac{1}{2}\)
kết hợp với pt ban đầu ta có hệ pt \(\hept{\begin{cases}7x^2+7x=y+\frac{1}{2}\\7y^2+7y=x+\frac{1}{2}\end{cases}}\)
trừ 2 vế của 2 pt ta có \(7\left(x^2-y^2\right)+7\left(x-y\right)=y-x\)
<=> \(7\left(x-y\right)\left(x+y\right)+7\left(x-y\right)+x-y=0\)
<= .\(\left(x-y\right)\left(7x+7y+8\right)=0\)
<=> \(\orbr{\begin{cases}x=y\\7x+7y+8=0\end{cases}}\)(vô lí )
khi đó thay x=y vào là ok nhé
x^2 + 7x = căn[(4x+9)/28] (1)
<=> 7(x+1/2)^2 - 7/4 = căn[(4x+9)/28]
Đặt căn[(4x+9)/28] = y + 1/2 (2)
<=> 7y^2 + 7y = x+1/2 (bình phương 2 vế rồi thu gọn) (3)
Mặt khác thay (2) vào (1) ta được: 7x^2 + 7x = y +1/2 (4)
Lấy (3)-(4), ta có: 7(x-y)(x+y+1)=-(x-y) <=>(x-y)(7x+7y+8)=0
<=> x-y =0 (vì 7x+7y+8 >0)
<=> x=y
cảm ơn !