Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho H(x)= 0
Ta có: 2\(x^2\)- 2x= 0
2x. (x-1) = 0
=> 2x= 0 hoặc x-1= 0
x= 0: 2 x= 0+1
x= 0 x= 1
Vậy x= 0 hoặc x=1
`x(1-2x)+(2x^2-x+4)=0`
`x-2x^2+2x^2-x+4=0`
`(x-x)+(2x^2-2x^2)+4=0`
`0x+4=0`
`=>` PTVN.
\(G\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(G\left(x\right)=x-2x^2+2x^2-x+4\)
\(G\left(x\right)=4\left(\ne0\right)\)
Vậy phương trình vô nghiệm
Q(x)=0
\(\Leftrightarrow2x\left(\dfrac{1}{2}x^2-8x\right)=0\)
\(\Leftrightarrow2x^2\cdot\left(\dfrac{1}{2}x-8\right)=0\)
=>x=0 hoặc x=16
\(Q\left(x\right)=\left(\dfrac{-1}{2}x^2+8x\right)\left(-2x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}x^2+8x=0\\-2x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\left(\dfrac{-1}{2}x+8\right)=0\\x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}x+8=0\\x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{-1}{2}x=-8\\x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=16\\x=0\end{matrix}\right.\)
Vậy đa thức có nghiệm là x=16 hoặc x=0
`1)`
`A(x)=x^3-2x^2+5x-2-x^3+x+7`
`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`
`A(x)=-2x^2+6x+5`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Hệ số tự do: `5`
`2)`
`H(x)-(2x^2 + 3x – 10) = A(x)`
`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`
`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`
`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`
`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`
`H(x)=9x-5`
`3)`
Đặt `9x-5=0`
`9x=0+5`
`9x=5`
`-> x=5/9`
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Chọn C
Ta có f(x) + g(x) = (2x2 - 5x - 3) + (-2x2 - 2x + 1) = -7x - 2
Cho -7x - 2 = 0 ⇒ x = -2/7
2x2-2x+10=0
=> 2 ( x2-x+5 ) = 0
=> x2-x+5 = 0
=> x(x-1) = -5
=> x-1 = -5/x
=> x = -5/x + 1
Q(x)=2(x2-x+5)=0
=>x2-x+5=0
=>x2-2.x.1/2+(1/2)2+19/4=0
=> (x+1/2)2+19/4 =0 (vô lí vì VT>VP với mọi x)
=> Q(x) vô nghiệm