Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)\left(x+5\right)=0\Rightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
b) \(x+1x^2+1=x^2+x+1=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)với mọi x.
=> Pt vô nghiệm.
c) \(x^2+4x=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
P/s: Check lại đề ý b nhé.
a) Ta có:(x-1)(x+5)=0
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy: S={1;-5}
b) Ta có: \(x^2+x+1=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)(Vô lý)
Vậy: \(S=\varnothing\)
c) Ta có: \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
f(x) = 4x + 12
=> 4x + 12 = 0
=> 4x = -12
=> x = -3
Vậy đa thức f(x) = 4x + 12 có nghiệm là -3
Câu b cậu viết lai đề được không ?
b: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)
Đa thức `A(x)` sau khi bỏ dấu ngoặc:
\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)
Với `n = 2 . 2004 + 2 . 2005 = 8018`
Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)
`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc
Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)
\(=0^{2004}.8^{2005}=0\)
Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`
\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)
\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{0;2\right\}\)
\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b,
\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )
Vậy \(S=\left\{0\right\}\)
a) Đặt A(x)=0
\(\Leftrightarrow-12x=-18\)
hay \(x=\dfrac{3}{2}\)
b) Đặt B(x)=0
\(\Leftrightarrow x^2=16\)
hay \(x\in\left\{4;-4\right\}\)
c) Đặt C(x)=0
\(\Leftrightarrow3x^2+12=0\)(Vô lý)
a) \(\left(x+1\right)\left(x-1\right)\)
\(=x^2-1^2\)
\(=x^2-1\)
b) \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\)
\(=\left(x^2\right)^2-1^2\)
\(=x^4-1\)
c) \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)\left(x^2+1\right)-x^8\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)-x^8\)
\(=\left(x^4-1\right)\left(x^4+1\right)-x^8\)
\(=\left(x^4\right)^2-1-x^8\)
\(=x^8-1-x^8\)
\(=-1\)
a, Ta có : \(\Delta=\left(-1\right)^2-4.10=1-40=-39< 0\)
Vì \(\Delta< 0\)nên đa thức trên vô nghiệm
b, Ta có : \(\Delta=\left(-8\right)^2-4.12=64-48=16>0\)
Vì \(\Delta>0\)nên đa thức trên có 2 nghiệm phân biệt :
\(x_1=\frac{8+\sqrt{16}}{2}=\frac{8+4}{2}=\frac{12}{2}=6\)
\(x_2=\frac{8-\sqrt{16}}{2}=\frac{8-4}{2}=\frac{4}{2}=2\)
Vậy tập nghiệm của đa thức trên là {2;6}
a, Ta có : \(\left(-1\right)^2-4.10=1-40< 0\)(vô nghiệm)
b, Ta có : \(\left(-8\right)^2-4.\left(-12\right)=64+48>0\)
Suy ra : \(x_1=\frac{8-\sqrt{112}}{2};x_2=\frac{8+\sqrt{112}}{2}\)