K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

\(A_{\left(x,y\right)}=x^2+4y^2+1-4xy+2x-4y\)

Đặt 2y=z

\(A_{\left(x,z\right)}=x^2+z^2+1-2xz+2x-2z\)

\(A_{\left(x,z\right)}=\left(x^2-xz\right)+\left(z^2-xz\right)+\left(x-z\right)+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left[x\left(x-z\right)+z\left(z-x\right)+\left(x-z\right)\right]+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left[\left(x-z\right)\left(x-z+1\right)\right]+\left(x-z+1\right)\)

\(A_{\left(x,z\right)}=\left(x-z+1\right)\left(x-z+1\right)=\left(x-z+1\right)^2\)

Vậy nghiệm đã thức là: \(x-z+1=0\Leftrightarrow x-2y+1=0\)

p/s: lớp 8 không dài dòng thế này%