K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2022

\(g\left(x\right)=x^2+2x+10=\left(x+1\right)^2+9>0;\forall x\)

\(\Rightarrow\) Đa thức đã cho vô nghiệm

6 tháng 8 2020

a) f(x) = 2x - 10 = 0

<=> 2x = 10

<=> x = 5

b) thay x = -1 vào đa thức, ta có:

g(-1) = a(-1)^3 + b(-1)^2 + c(-1) + d = 0

g(-1) = -a + b - c + d = 0

g(-1) = -a - c = -b - d

g(-1) = a + c = b + d (đpcm)

6 tháng 8 2020

a) f(x) có nghiệm <=> 2x - 10 = 0

                              <=> 2x = 10

                              <=> x = 5

b) g(x) = ax3 + bx2 + cx + d

x = -1 là nghiệm của g(x) 

=> g(-1) = a(-1)3 + b(-1)2 + c(-1) + d = 0

=> g(-1) = -a + b - c + d = 0

=> g(-1) = -a - c = -b - d 

=> g(-1) = a + b = b + d 

=> đpcm 

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

5 tháng 5 2019

\(f_{\left(x\right)}=3x+3=0\)

\(\Rightarrow\)\(3x=-3\)

\(\Rightarrow\)\(x=-1\)

vậy...

9 tháng 5 2019

=3x+3=0

=>3x=3

=>x=1