Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5
Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)
a)h(x)=f(x)-g(x)
=(2x3 +3x2 -2x +3)-(2x3 +3x2 -7x +2)
=2x3 + 3x2 - 2x +3 - 2x3 -3x2 + 7x -2
=5x+1
b)h(x)=5x+1=0
=>5x=-1
x=\(\frac{-1}{5}\)
Bài 2 :
a, \(P\left(x\right)=2x^5+2-6x^2-3x^3+4x^2-2x+x^3+4x^5=6x^5-2x^3-2x^2+2\)
b, sắp xếp rồi, trên ý
c, Bậc : 5
Bài 3 : \(Q\left(x\right)=3x-5=0\Leftrightarrow x=\frac{5}{3}\)
a) Ta có: \(M\left(x\right)=4x^2-4x-3x^3-8\)
\(=-3x^3+4x^2-4x-8\)
Ta có: \(N\left(x\right)=2+3x^3+x-4x^2\)
\(=3x^3-4x^2+x+2\)
a) Tìm h(x) = f(x) - g(x)
f(x) - g(x) = (-2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2) - (2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2)
= -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2 - 2x2 + x3 - 3x - 3x3 - x2 + x + 9x - 2
= (-2x2 + x2 + 4x2 - 2x2 - x2) + (-3x3 + 5x3 + x3 - 3x3) + (-5x - x + 4x - 3x + x + 9x) + (3 - 2)
= 5x + 1
Vậy h(x) = 5x + 1
b) Tìm nghiệm của đa thức h(x)
Cho h(x) = 0
\(\Leftrightarrow\) 5x + 1 = 0
5x = 0 + 1
5x = 1
x = \(\dfrac{1}{5}\)
Vậy x = \(\dfrac{1}{5}\) là nghiệm của đa thức h(x).
Ta có f(x) + g(x) = 4x-2.
Cho 4x - 2 = 0 ⇒ 4x = 2 ⇒ x = 1/2. Chọn A
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
Đặt -4/3x^3+5x+4=0
=>-4x^3+15x+12=0
=>\(x\simeq2,25\)
Answer:
Đặt \(A\left(x\right)=0\)
\(\Rightarrow\frac{2}{3}x^3+\frac{3}{4}x^2+\frac{4}{5}x-2\frac{13}{60}=0\)
\(\Rightarrow60\left(\frac{2}{3}x^3+\frac{3}{4}x^2+\frac{4}{5}x-\frac{133}{60}\right)=0.60\)
\(\Rightarrow40x^3+45x^2+48x-133=0\)
\(\Rightarrow40x^3+\left(85x^2-40x^2\right)+\left(133x-85x\right)-133=0\)
\(\Rightarrow\left(40x^3+85x^2+133x\right)-\left(40x^2+85x+133\right)=0\)
\(\Rightarrow x\left(40x^2+85x+133\right)-\left(40x^2+85x+133\right)=0\)
\(\Rightarrow\left(x-1\right)\left(40x+85x+133\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\40x^2+85x+133=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)