Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\left(-x+5\right)-\dfrac{3}{2}.\left(x-4\right)=0\)
<=> \(-2x+10-\dfrac{3x}{2}+6=0\)
<=> \(\dfrac{-7x}{2}+16=0\)
<=> \(\dfrac{-7x}{2}=-16\)
<=> \(x=\dfrac{32}{7}\)
vậy ...
Ta có: \(2\left(-x+5\right)-\dfrac{3}{2}\left(x-4\right)=0\)
\(\Leftrightarrow-2x-10-\dfrac{3}{2}x+6=0\)
\(\Leftrightarrow x\cdot\dfrac{-7}{2}=4\)
hay \(x=-\dfrac{8}{7}\)
a) Ta có: f(x)=-3
<=>x5-2x2+x4-x5+3x2-x4-3+2x=-3
<=>(x5-x5)+(-2x2+3x2)+(x4-x4)+2x-3=-3
<=>x2+2x-3=-3
<=>x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x+2=0
<=>x=0 hoặc x=-2
Vậy..........
b)đa thức f(x) có nghiệm
<=>f(x)=0
<=>x2+2x-3=0
<=>x2+3x-x-3=0
<=>x(x+3)-(x+3)=0
<=>(x-1)(x+3)=0
<=>x-1=0 hoặc x+3=0
<=>x=1 hoặc x=-3
Vậy nghiệm của đa thức f(x) là x=-3;x=1
a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)
dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.
`D(x)=2x^4+7x^2=0`
`-> x(2x^3+7x)=0`
`->`\(\left[{}\begin{matrix}x=0\\2x^3+7x=0\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\x\left(2x^2+7\right)=0\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\x=0\\2x^2+7=0\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\2x^2=-7\text{ }\left(\text{k t/m}\right)\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x=0`
`E(x)=8x^4+x=0`
`-> x(8x^3+1)=0`
`->`\(\left[{}\begin{matrix}x=0\\8x^3+1=0\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\8x^3=-1\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\x^3=-\dfrac{1}{8}\end{matrix}\right.\)
`->`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={0 ; -1/2}`
`F(x)=x(-2x+3)+2x^2-5=0`
`-> -2x^2+3x+2x^2-5=0`
`-> 3x-5=0`
`-> 3x=5`
`-> x=5/3`
Vậy, nghiệm của đa thức là `x=5/3`.
Ta có:
\(4x^2+\dfrac{2}{5}x\)
\(=x\left(4x+\dfrac{2}{5}\right)\)
Do đó để đa thức \(4x^2+\dfrac{2}{5}x\) có nghiệm thì \(x\left(4x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x+\dfrac{2}{5}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\4x=-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{10}\end{matrix}\right.\)
Vậy nghiệm của đa thức là \(x\in\left\{0;-\dfrac{1}{10}\right\}\)
Ta có: \(2\left(-x+5\right)-\dfrac{3}{2}\left(x-4\right)=0\)
\(\Leftrightarrow-2x-1-\dfrac{3}{2}x+6=0\)
\(\Leftrightarrow x\cdot\dfrac{-7}{2}=-5\)
hay \(x=\dfrac{10}{7}\)