Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta tách như sau:
\(\frac{3n+5}{6n}=\frac{1}{2}+\frac{5}{6n}\)
+ Nếu n là số nguyên âm thì \(\frac{1}{2}+\frac{5}{6n}<\frac{1}{2}\forall n\) (Bởi vì \(\frac{5}{6n}<0\))
+ Nếu n là số nguyên dương thì \(\frac{1}{2}+\frac{5}{6n}\le\frac{1}{2}+\frac{5}{6}=\frac{4}{3}\forall n\)
Vậy maxP = \(\frac{4}{3}\) khi n = 1.
Chúc em học tốt ^^
A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0 ⇒ n # -1/3)
A \(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1
⇒ 6n + 2 - 5 ⋮ 3n + 1
⇒ 2.( 3n + 1) - 5 ⋮ 3n + 1
⇒ 5 ⋮ 3n + 1
⇒ 3n + 1 \(\in\) { -5; -1; 1; 5}
⇒ n\(\in\) {-2; -2/3; 0; 4/3}
vì n \(\in\) Z nên n \(\in\) { -2; 0}
Vậy n \(\in\) { -2; 0}
Để P đạt GTLN thì 3n+2 phải đạt GTNN
Mà n là số tự nhiên nên n nhỏ nhất là 0
=> 3n+2 2
Vậy với n= 0 thì P đạt GTLN
GTLN của P là .
a) Ta có :
\(Q=\dfrac{6n-1}{3n+2}=\dfrac{2\left(3n+2\right)-5}{3n+2}=2-\dfrac{5}{3n+2}\)
Để Q có giá trị nguyên thì :
\(5⋮3n+2\)
\(\Leftrightarrow3n+2\inƯ\left(5\right)\)
Ta có bảng :
\(3n+2\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(\dfrac{-1}{3}\) | \(-1\) | \(1\) | \(\dfrac{-7}{3}\) |
\(Đk\) \(n\in Z\) | loại | tm | tm | loại |
Vậy \(n\in\left\{-1;1\right\}\) là giá trị cần tìm
a)Ta có:6n-1/2n+2=6n+4-5/3n+2=6n+4/3n+2-5/3n+2=2-5/3n+2
Ta thấy 2 là số nguyên vậy 5/3n-2 phải là số nguyên để 6n-1/3n+2 là số nguyên
3n-2 là Ư(5)={-1;1-5;5}
Với 3n-2=-1 suy ra 3n=-1+2=1 suy ra n=0,3..333(không thỏa mãn điều kiện số nguyên)
...............1............3n=1+2=3 ...........n=1(thỏa mãn điều kiện)
...............-5...........3n=-5+1=4............n=1,33..3(không t/m đ/k số nguyên)
...............5..............3n=5+1=5............n=2(t/m đ/k số nguyên)
Vậy n=1;2
a) để A có giá trị nguyên thì
6n-1 chia hết cho 3n+2
6n+4-5 chia hết cho 3n+2
suy ra:2(3n+2)-5 chia hết cho 3n+2
vì 3n+2 chia hết cho 3n+2 nên 2(3n+2) cũng chia hết cho 3n+2
suy ra : 5 chia hết cho 3n+2
suy ra:3n+2 thuộc ước của 5
Ư(5)=1;-1;5;-5
ta có bảng giá trị
3n+2 1 -1 5 -5
n -1/3 -1 1 -7/3
mà A thuộc Z
suy ra:n=1;-1
vậy để A có giá trị nguyên thì
n thuộc 1;-1
b)cậu tự làm nhé
Lời giải:
$D=\frac{2(3n+1)-5}{3n+1}=2-\frac{5}{3n+1}$
Để $D$ max thì $\frac{5}{3n+1}$ min
$\Rightarrow 3n+1$ max
$\Rightarrow n$ max
Với $n$ nguyên thì không có giá trị $n$ max. Nên không tồn tại $n$ nguyên để $D$ max.