K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Tìm số nguyên n để B=12n+20178/n+2018 là số nguyên ?

14 tháng 4 2018

Để B là số nguyên thì \(12n+2017⋮8n+2018\)

=> \(\left(8n+2018\right)+4n-1⋮8n+2018\)

Mà \(8n+2018⋮8n+2018\)

=> \(4n-1⋮8n+2018\)

=> \(\left(12n+2017\right)+\left(4n-1\right)⋮8n+2018\)

=> \(16n+2016⋮8n+2018\)

=> \(2\left(8n+2018\right)-2020⋮8n+2018\)

Mà \(2\left(8n+2018\right)⋮8n+2018\)

=> \(2020⋮8n+2018\)

=> \(8n+2018\inƯ\left(2020\right)=\left\{\pm1;\pm2;\pm4;\pm5;.....;\pm2020\right\}\)

=> \(8n\in\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}\)

Mà n là số nguyên

=> \(\left\{\pm1-2018;\pm2-2018;...;\pm2020-2018\right\}⋮8\)

.........................................................................................................................

Bạn ngồi mà mò. Chắc mò đến năm sau mới xong! Chúc bạn mò tốt!

Để B là số nguyên thì \(24n+3034⋮8n+2018\)

\(\Leftrightarrow8n+2018\in\left\{1;2;5;10;20;302;604;755;1510;3020\right\}\)

\(\Leftrightarrow8n\in\left\{-2016;-2008\right\}\)

hay \(n\in\left\{-252;-251\right\}\)

23 tháng 2

Số âm đâu ?

 

13 tháng 3 2017

Ý 1 tớ chịu còn 2 ý sau để tớ giúp

Gỉa sử : 12n+1 chia hết cho d       ( d là ƯCLN)

              30n+2 chia hết cho d

=>  5(12n+1) chia hết cho d

      2(30n+2) chia hết cho d

=> 5(12n+1) - 2(30n+2) chia hết cho d

=>( 60n + 5) - (60n + 4)

=> 60n+5 - 60n-4 chia hết cho d

=> 1 chia hết cho d 

=> d=1

=> 12n+1/30n+2 tối giản ( đpcm )

Gỉa sử  8n+193 chia hết cho d         d nguyên tố 

             4n+3 chia hết cho d

=>  (8n+193) - 2 ( 4n+3) chia hết cho d

=>  (8n+193) - (8n+6) chia hết cho d 

=> 8n+193 - 8n -6 chia hết cho d 

=> 187 chia hết cho d

Do d nto =>d = 11;17

=> 8n+193 chia hết cho 11

4n+3 chia hết cho 11 

=>4(8n+193) chia hết cho 11

3( 4n+3 ) chia hết cho 11

=> 32n+772 chia hết cho 11

12n+9 chia hết cho 11

=> 33n-n+11.70+2 chia hết cho 11

11n+n+11-2 chia hết cho 11

=>-n+2 chia hết cho 11

n-2 chia hết cho 11

=> n-2 chia hết cho 11

=> n-2 = 11k(k thuộc N*)

=> n= 11k+2  (1)

d=17 ta có

8n+193 chia hết cho 17

4n+3 chia  hết cho 17

=>2(8n+193) chia hết cho 17

4(4n+3) chia hết cho 17

=. 16n+386 chia hết cho 17

16n+12 chia hết cho 17

=> 17n-n+17.22+12 chia hết cho 17

17n-n+12 chia hết cho 17

=> -n+12 chia hết cho 17

=> n-12 chia hết cho 17

=> n-12=17q (q thuộc N*)

=>n= 17q+12 (2)

Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12

Do 150<n<170

=> n thuộc 156;165;167

Vậy n thuộc 156;165;167

       

             

13 tháng 3 2017

để A là PS thì n-3 khác 0 

=>n # 3

Để A có giá trị nguyên thì n+1 phải chia hết cho n-3

=>n-3 là Ư(n+1)

Ta có:n+1=(n-3)+4

=>n-3 là Ư(4)

TA có bảng.... 

Rồi đến đây bạn tự tính và kết luận là xong nhé

16 tháng 1 2019

a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63

đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được

3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1

nên n+5 chia hết cho 7 => n=7k+2 (k E N)

b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63

=> 3n+1 E  {1;7}=>3n E {0;6}=>n E {0;2}

Vậy với n=0 hoặc: n=2 thì B nguyên 

16 tháng 1 2019

a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63

đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được

3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1

nên n+5 chia hết cho 7 => n=7k+2 (k E N)

b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63

=> 3n+1 E  {1;7}=>3n E {0;6}=>n E {0;2}

Vậy với n=0 hoặc: n=2 thì B nguyên

 

24 tháng 3 2018

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

đến đây bn liệt kê ước của 3 r` lm tiếp!

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2 = 1

=> n = 3

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)