Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 8 chia hết cho n + 1
=> 2n + 2 + 6 chia hết cho n + 1
=> 2(n + 1) + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1 (Vì 2(n + 1) chia hết cho n + 1)
=> n + 1 thuộc {-1; 1; -2; 2; -3; 3; -6; 6}
=> n thuộc {-2; 0; -3; 1; -4; 2; -7; 5}
Ta có : ` 2n-8 \vdots n+1 ` và ` n+1 \vdots n+1 ` ` => ` ` 2n-8 \vdots n+1 ` và ` 2n+2 \vdots n+1 ` ` => ` ` ( 2n+2 ) - ( 2n-8) \vdots n+1 ` ` <=> ` ` 10 \vdots n+1 ` ` <=> ` ` n+1 in { -10 ; -5;-2;-1;1;2;5;10} ` ` => ` ` n in {-11;-6;-3;-2;0;1;4;9} `
a, vì \(\frac{3n-1}{7n+5}\)thuộc Z suy ra : 3n - 1 chia hết cho 7n +5 => 7.( 3n - 1 ) chia hết cho 7n + 5
=> 21n - 7 chia hết cho 7n + 5 => 21n + 15 - 22 chia hết cho 7n + 5 => 3.( 7n + 5) - 22 chia hết cho 7n + 5
=> - 22 chia hết cho 7n + 5 ( vì 3.( 7n+ 5) chia hết cho 7n + 5 ) .
=> 7n + 5 là Ư(-22) = { -22, -11 , -2 ; -1; 1, 2, 11, 22 } đến đây dễ rồi bạn tự làm tiếp nhé.
b,vì \(\frac{n^{2014}+n^{2013}+2}{n+1}.\)thuộc Z nên ta có : \(n^{2014}+n^{2013}+2\)chia hết cho n + 1
=> \(n^{2013}\left(n+1\right)+2\)chia hết cho n +1
=> 2 chia hết cho n + 1 ( vì \(n^{2013}\left(n+1\right)\)chia hết cho n + 1 )
=> n + 1 là Ư(2) ={- 2; -1 ; 1; 2 } đến đây bạn tự làm tiếp nhé !
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
Để n - 8/n2 + 1 thuộc Z thì n - 8 chia hết cho n2 + 1
=> n(n - 8) chia hết cho n2 + 1
=> n2 - 8n chia hết cho n2 + 1
=> n2 + 1 - 8n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => -(8n + 1) chia hết cho n2 + 1
=> 8n + 1 chia hết cho n2 + 1
Mà n - 8 chia hết cho n2 + 1 => 8.(n - 8) chia hết cho n2 + 1 => 8n - 64 chia hết cho n2 + 1
=> (8n + 1) - (8n - 64) chia hết cho n2 + 1
=> 8n + 1 - 8n + 64 chia hết cho n2 + 1
=> 65 chia hết cho n2 + 1
Mà $n^2+1\ge1$n2+1≥1=> $n^2+1\in\left\{1;5;13;65\right\}$n2+1∈{1;5;13;65}
=> $n^2\in\left\{0;4;12;64\right\}$n2∈{0;4;12;64}
Mà n2 là bình phương của 1 số tự nhiên => $n^2\in\left\{0;4;64\right\}$n2∈{0;4;64}
=> $n\in\left\{0;2;-2;8;-8\right\}$n∈{0;2;−2;8;−8}
Thử lại ta thấy có 1 giá trị bị loại là -8
Vậy $n\in\left\{0;2;-2;8\right\}$
Để n - 8/n2 + 1 thuộc Z thì n - 8 chia hết cho n2 + 1
=> n(n - 8) chia hết cho n2 + 1
=> n2 - 8n chia hết cho n2 + 1
=> n2 + 1 - 8n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => -(8n + 1) chia hết cho n2 + 1
=> 8n + 1 chia hết cho n2 + 1
Mà n - 8 chia hết cho n2 + 1 => 8.(n - 8) chia hết cho n2 + 1 => 8n - 64 chia hết cho n2 + 1
=> (8n + 1) - (8n - 64) chia hết cho n2 + 1
=> 8n + 1 - 8n + 64 chia hết cho n2 + 1
=> 65 chia hết cho n2 + 1
Mà \(n^2+1\ge1\)=> \(n^2+1\in\left\{1;5;13;65\right\}\)
=> \(n^2\in\left\{0;4;12;64\right\}\)
Mà n2 là bình phương của 1 số tự nhiên => \(n^2\in\left\{0;4;64\right\}\)
=> \(n\in\left\{0;2;-2;8;-8\right\}\)
Thử lại ta thấy có 1 giá trị bị loại là -8
Vậy \(n\in\left\{0;2;-2;8\right\}\)