Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
A=n+3 chia hết cho n+1
mà n+3 =(n+1)+2
vì n+1 chia hết cho n+1
nên A chia hết cho n+1
khi2chia hết cho n+1
suy ra n+1 thuộc ước của 2
suy ra n+1 thuộc {1;2}
mà n thuộc Z Suy ra n thuộc { 0;1}
Câu 2 dựa theo cách trên mà tự làm
\(\frac{n+3}{n+1}=\frac{n+1+2}{n+1}=\frac{n+1}{n+1}+\frac{2}{n+1}=1+\frac{2}{n+1}\)
Để \(A\in Z\)<=> n + 1 \(\in\)Ư(2) = {-1;1;-2;2}
n + 1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
\(\frac{3n-5}{n-4}=\frac{3n-12-17}{n-4}=\frac{3\left(n-4\right)-17}{n-1}=\frac{3\left(n-4\right)}{n-4}-\frac{17}{n-4}\)
Để \(B\in Z\) <=> n - 4 \(\in\)Ư(17) = {1;-1;17;-17}
n - 4 | 1 | -1 | 17 | -17 |
n | 5 | 3 | 21 | -13 |
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
Để A là số nguyên thì :
3n-5 \(⋮\) n + 4
\(\Rightarrow\) 3n+12 - 17 \(⋮\) n + 4
\(\Rightarrow\) 3.( n + 4 ) - 17 \(⋮\) n + 4
\(\Rightarrow\) 17 \(⋮\) n + 4
Suy ra : n+4 là Ư(17) = -17 ; -1 ; 1 ; 17
Vậy n= -21 ; -5 ; -3 ; 13
Vậy n
1)Thực hiện phép tính: 8/5*10+8/10*15+8/15*20+...+8/150*155
2)Tìm n thuộc N để D thuộc Z: D=3n+3/n+4
A= (3n-12)+13:n-4=3(n-4)+13
Để A thuộc Z thì 3(n-4)phải thuộc Z
=> (n-4)thuộc Ư(3)thuộc {1,-1,3,-3}
TH1:n-4=1=>n=5(TM)
TH2:n-4=-1=>n=3(TM)
TH3:n-4=3=>n=7(TM)
TH4:n-4=-3=>n=1(TM)
Vậy n thuộc {5,3,7,1} thìA thuộc z
Để A thuộc Z thì 3n - 5 chia hết n + 4
<=> 3n + 12 - 17 chia hết n + 4
=> 3.(n + 4) - 17 chia hết n + 4
=> 17 chia hết n + 4
=> n + 4 thuộc Ư(17) = {-1;1;-17;17}
=> n = {-5;-3;-21;13}
a, Ta có 5 chia hết cho n+5
\(\Rightarrow n+5\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)}
Ta có bảng giá trị
n+5 | -1 | -5 | 1 | 5 |
n | -6 | -10 | -4 | 0 |
Vậy x={-6;-10;-4;0}
\(a,3n+2⋮n-1\Rightarrow\frac{3n+2}{n-1}\inℤ\Rightarrow\frac{3n-3+5}{n-1}\inℤ\)
\(\Rightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}\inℤ\Rightarrow3+\frac{5}{n-1}\inℤ\)
\(3\inℤ\Rightarrow\frac{5}{n-1}\inℤ\Rightarrow n-1\inƯ\left(5\right)=\left\{\pm1,\pm5\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(b,3n-8⋮n-4\Rightarrow\frac{3n-8}{n-4}\inℤ\Rightarrow\frac{3n-12+4}{n-4}\inℤ\)
\(\Rightarrow\frac{3n-12}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow\frac{3\left(n-4\right)}{n-4}+\frac{4}{n-4}\inℤ\Rightarrow3+\frac{4}{n-4}\inℤ\)
\(3\inℤ\Rightarrow\frac{4}{n-4}\inℤ\Rightarrow n-4\inƯ\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
n - 4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
\(c,2n-5⋮n-1\Rightarrow\frac{2n-5}{n-1}\inℤ\Rightarrow\frac{2n-2-3}{n-1}\inℤ\)
\(\Rightarrow\frac{2n-2}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow\frac{2\left(n-1\right)}{n-1}-\frac{3}{n-1}\inℤ\Rightarrow2-\frac{3}{n-1}\inℤ\)
\(2\inℤ\Rightarrow\frac{3}{n-1}\inℤ\Rightarrow n-1\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
n - 1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
a)Ta có:3n+2=3.(n-1)+5
Mà 3.(n-1) chia hết cho (n-1) nên suy ra
Để 3.(n-1)+5 chia hết cho (n-1) thì 5 phải chia hết cho (n-1)
Suy ra:
n-1 thuộc ước của 5
Đến đây cậu tự làm tiếp nhé. Xin lỗi.
Để các p/số là số nguyên thì
a. 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}
b. 3n - 5 chia hết cho n + 4
=> 3n + 12 - 17 chia hết cho n + 4
=> 3.(n + 4) - 17 chia hết cho n + 4
mà 3.(n + 4) chia hết cho n + 4
=> 17 chia hết cho n + 4
=> n + 4 thuộc Ư(17) = {-17; -1; 1; 17}
=> n thuộc {-21; -5; -3; 13}.
a) 8/n + 1 thuộc Z
=> 8 chia hết cho n + 1
=> n + 1 thuộc Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
=> n thuộc {-9; -5; -3; -2; 0; 1; 3; 7}