Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số trên tồn tại thì \(n^2+3\ne0\)
Mà \(3\ne0\); \(n^2\ge0\)
=> \(n^2+3\ne0\)
=> A luôn luôn tồn tại
b) n=-5 TM ĐKXĐ
Thay n=-5 vào A ta được:
\(A=\frac{-5-5}{\left(-5\right)^2+3}=-\frac{10}{28}=-\frac{5}{14}\)
n=0 TM ĐKXĐ
Thay n=0 vào A ta được:
\(A=\frac{0-5}{0^2+3}=-\frac{5}{3}\)
n=5 TM ĐKXĐ:
Thay n=5 TM ĐKXĐ:
\(A=\frac{5-5}{5^2+3}=\frac{0}{28}=0\)
a) Do n2 luôn > hoặc = 0 khác -3 => n2 + 3 khác 0
=> A luôn tồn tại
b) bn chỉ việc thay n rùi tính A là ra
Phân số M không tồn tại khi n2+15 =0 => n2= -15(vô lý vì bình phương của 1 sô nguyên luôn không âm).Do đó,n2+15 luôn khác 0 nên phân số M luôn tồn tại.
Lời giải:
a. Ta thấy $n^2+5\geq 5> 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow n^2+5\neq 0$ với mọi $n\in\mathbb{Z}$
$\Rightarrow$ phân số $M$ luôn tồn tại.
b.
Với $n=0$ thì $M=\frac{0-3}{0^2+5}=\frac{-3}{5}$
Với $n=2$ thì $M=\frac{2-3}{2^2+5}=\frac{-1}{9}$
Với $n=-5$ thì $M=\frac{-5-3}{(-5)^2+5}=\frac{-4}{15}$