Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) Để \(A=\frac{7}{9}\Leftrightarrow\frac{5n+2}{2n+7}=\frac{7}{9}\)
\(\Leftrightarrow9\left(5n+2\right)=7\left(2n+7\right)\)
\(\Leftrightarrow45n+18=14n+49\)
\(\Leftrightarrow31n=31\)
\(\Leftrightarrow n=1\)
n) Để A nguyên thì \(\frac{5n+2}{2n+7}\in Z\)
Nếu A nguyên thì 2A cũng nguyên. Vậy ta tìm n nguyên để 2A nguyên sau đó thử lại để chọn các giá trị đúng của n.
\(2A=\frac{10n+4}{2n+7}=\frac{5\left(2n+7\right)-31}{2n+7}=5-\frac{31}{2n+7}\)
Để 2A nguyên thì \(2n+7\inƯ\left(31\right)=\left\{\pm1;\pm31\right\}\)
Ta có bảng:
2n + 7 | 1 | -1 | 31 | -31 |
n | -3 | -4 | 12 | -19 |
KL | TM | TM | TM | TM |
Vậy ta có \(n\in\left\{-1;-4;12;-19\right\}\)
c
Tớ chỉ nói cách làm thôi:
Cậu tìm n để A là số nguyên, sau khi ra kết quả thì sẽ đánh số (1)
Rôi cậu tìm n đề B là số nguyên, sau khi ra kết quả sẽ đánh số (2)
Tương tự C cũng vậy.
Sau đó cậu xem trong cả ba phần (1),(2) và (3)
Những số nào trùng nhau sẽ là kết quả
Cậu sướng vì được bạn thân giải hộ nhé
nhớ k đấy
A = \(\frac{7}{N-1}\)=> N - 1 E Ư(7) = { -1 ; 1 ; -7 ; 7 }
TA CÓ BẢNG
N-1 | -1 | 1 | -7 | 7 |
N | 0 | 2 | -6 | 8 |
VẬY N E { 0 ; 2 ; -6 ; 8 }
B = \(\frac{-8}{N+2}\)=> N + 2 E Ư(-8) = {-1 ; -2 ; -4 ; -8 ; 1 ; 2 ; 4 ; 8 }
TA CÓ BẢNG
N+2 | -1 | -2 | -4 | -8 | 1 | 2 | 4 | 8 |
N | -3 | -4 | -6 | -10 | -1 | 0 | 2 | 6 |
VẬY N E { -3 ; -4 ; -6 ; -10 ; -1 ; 0 ; 2 ; 6 }
C = \(\frac{5}{N+3}\)=> N + 3 E Ư(5) = { -1 ; 1 ; -5 ;5 }
TA CÓ BẢNG
N+3 | -1 | 1 | -5 | 5 |
N | -4 | -2 | -8 | 2 |
VẬY N E { -4 ; -2 ; -8 ; 2 }
\(\frac{5n-7}{n+2}=\frac{5n+10-10-7}{n+2}=\frac{5n+10-17}{n+2}=\)\(\frac{5n+10}{n+2}+\frac{-17}{n+2}\)
Ư(-17)= {-17;-1;1;17}
\(n+2=-17\) \(n=-19\)
\(n+2=-1\) \(n=-3\)
\(n+2=1\) \(n=-1\)
\(n+2=17\) \(n=15\)
\(\Rightarrow n=\left(-19;-3;-1;15\right)\)
a) \(\frac{5n+1}{n+2}\in Z\Leftrightarrow5n+1⋮n+2\)
\(\Rightarrow n+n+n+n+n+1⋮n+2\)
\(\Rightarrow\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)-9⋮n+2\)
\(\Rightarrow9⋮n+2\)(vì \(n+2⋮n+2\))
\(\Rightarrow n+2\inƯ\left(9\right)\)
\(\Rightarrow n+2\in\left(1;3;9;-1;-3;-9\right)\)
\(\Rightarrow n\in\left(-1;1;7;-3;-5;-11\right)\)
vậy \(n\in\left(-1;1;7;-3;-5;-11\right)\)thì phân số trên có giá trị nguyên