Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+3n-13⋮n+3\)
Mà \(n+3⋮n+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}n^2+3n-13⋮n+3\\n^2+3n⋮n+3\end{matrix}\right.\)
\(\Leftrightarrow13⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(13\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}n+3=1\\n+3=13\\n+3=-1\\n+3=-13\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=10\\n=-4\\n=-16\end{matrix}\right.\)
Vậy ..
n2+3n−13⋮n+3
Mà n+3⋮n+3
⇔{n2+3n−13⋮n+3n2+3n⋮n+3
⇔13⋮n+3
⇔n+3∈Ư(13)
⇔[n+3=1n+3=13n+3=−1n+3=−13
⇔[n=−2n=10n=−4n=−16
Vậy ..
Ta có: n2 + 3n + 13 = n( n+ 3 ) + 13 chia hết cho n + 3
=> 13 chia hết cho n + 3 => n + 3 thuộc Ư(13) = { - 13 ; - 1 ; 1; 13 }
Ta có bảng :
n+3 | -13 | -1 | 1 | 13 |
n | -16 | -4 | -2 | 10 |
Mà n nhỏ nhất
=> n = - 16
Vậy n =-16
n2 + 3 chia hết cho n - 1
=> n2 - 1 + 4 chia hết cho n - 1
=> (n - 1)(n + 1) + 4 chia hết cho n - 1
Mà (n - 1)(n + 1) chia hết cho n - 1
=> 4 chia hết cho n - 1
=> n - 1 \(\in\) Ư(4) = {-1;1;-2;2;-4;4}
=> n \(\in\) {0;2;-1;3;-3;5}
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
=>13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E Ư(5)={-1;1;-5;5}
+)n-1=-1=>n=0
+)n-1=1=>n=2
+)n-1=-5=>n=-4
+)n-1=5=>n=6
vậy...
\(n^2+2n-7:n+2=>n\left(n+2\right)-7:n+2\) ) (: là chia hết)
=>-7 chia hết cho n+2
=>n+2 E Ư(-7)={-1;1;-7;7}
+)n+2=-1=>n=1
+)n+2=1=>n=3
+)n+2=-7=>n=-5
+)n+2=7=>n=9
vậy...
tick nhé
3x + 30 ⋮ x + 3
3x + 9 + 21 ⋮ x + 3
3(x + 3) + 21 ⋮ x + 3
=> 21 ⋮ x + 3
Hay x + 3 là ước của 21 là - 21 ; - 7 ; - 3; - 1; 1; 3; 7; 21
=> x + 3 = { - 21 ; - 7 ; - 3; - 1; 1; 3; 7; 21 }
=> x = { - 24; - 10; - 6 ; - 4 ; - 2 ; 0 ; 4 ; 18 }
Vậy x = { - 24; - 10; - 6 ; - 4 ; - 2 ; 0 ; 4 ; 18 }
3n + 30 chia hết cho n + 3
3n + 9 + 21 chia hết cho n + 3
3.(n + 3) + 21 chia hết cho n + 3
=> 21 chia hết cho n + 3
=> n + 3 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Ta có bảng sau :
n + 3 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | -2 | -4 | 0 | -6 | 4 | -10 | 18 | -24 |
Ta có:3n+14 chia hết cho n+3
=>3n+9+5 chia hết cho n+3
=>3(n+3)+5 chia hết cho n+3
Mà 3(n+3) chia hết cho n+3
=>5 chia hết cho n+3
=>n+3\(\in\)Ư(5)={-5,-1,1,5}
=>n\(\in\){-8,-4,-2,2}
suy ra n.n+3-13 chc n+3
n(n+3)-13 chc n+3
Do n(n+3) chc n+3 suy ra 13 chc n+3
suy ra n+3 thuộc Ư(13)={1;13;-1;-13}
n thuộc {-2;10;-4;-16}
ta co: (n+3) chia het cho n+3
=>n(n+3) chia het cho n+3
hay: n2+3n chia het cho n+3
=>(n2+3n) - (n2+3n-13) chia het cho n+3
hay:n2 +3n - n2 -3n +13 chia het cho n+3
13 chia het cho n+3
=> n+3 thuoc uoc cua 13={-13 ; -1 ; 1 ; 13}
n thuoc{-16;-4;-2;10}