K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

Ta có

\(n^2< n^2+n+6< n^2+6n+9\)

\(\Leftrightarrow n^2< n^2+n+6< \left(n+3\right)^2\)

Vì n2 +n+ 6 là số chính phương nên 

\(\left(n^2+n+6\right)=\left(\left(n+1\right)^2;\left(n+2\right)^2\right)\)

Thế vô giải ra được n = 5

7 tháng 10 2017

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

22 tháng 1 2023

chứng minh kiểu j vậy?

sai bét

 

14 tháng 7 2016

Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)

Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.

Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)\(4k^2\)

=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)

\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,

Ta có bảng sau: 

\(2k-2n-1\)13-1-3
\(2k+2n+1\)31-3-1
\(2k-2n\)240-2
\(2k+2n\)20-4-2
\(n\)0-1-10

Vậy n thỏa mãn đề bài là n=0 hoặc n=-1

5 tháng 6 2019

Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link này nhé!

14 tháng 12 2019

kết bạn vs mị ik

11 tháng 8 2016

Đặt \(k^2=n^2+31n+1984\) (k thuộc N)

Ta có \(n^2+30n+225< n^2+31n+1984< n^2+90n+2025\)

\(\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2\)

Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.

17 tháng 6 2020

Cho mình hỏi tại sao lại xét \(k^2\) nằm trong hai khoảng đó vâỵ ạ. Ta

có thể thay thế \(n^2+90n+2025\) bằng một biểu thức khác được không và tại sao ạ ?

Mong sớm nhận được phản hồi ạ. mình cảm ơn