Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Ta có: \(n^4+n^3+n^2=n^2\left(n^2+n+1\right)\)
Theo đề ra thì \(n^2\left(n^2+n+1\right)\) mà \(n^2\)là một số chính phương \(\Rightarrow n^2+n+1\)là 1 số chính phương.
Gọi \(n^2+n+1=k^2\) =>\(4n^2+4n+1+3\)= \(4k^2\)
=> \(\left(2n+1\right)^2+3=4k^2\) => \(\left(2k-2n-1\right)\left(2k+2n+1\right)=3\)
\(\Leftrightarrow2k-2n-1;2k+2n+1\inƯ\left(3\right)=\left\{3;1;-3;-1\right\}\)Và \(2k-2n-1;2k+2n+1\)phải đồng âm hoặc đồng dương,
Ta có bảng sau:
\(2k-2n-1\) | 1 | 3 | -1 | -3 |
\(2k+2n+1\) | 3 | 1 | -3 | -1 |
\(2k-2n\) | 2 | 4 | 0 | -2 |
\(2k+2n\) | 2 | 0 | -4 | -2 |
\(n\) | 0 | -1 | -1 | 0 |
Vậy n thỏa mãn đề bài là n=0 hoặc n=-1
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!
Đặt \(k^2=n^2+31n+1984\) (k thuộc N)
Ta có \(n^2+30n+225< n^2+31n+1984< n^2+90n+2025\)
\(\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2\)
Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.
Cho mình hỏi tại sao lại xét \(k^2\) nằm trong hai khoảng đó vâỵ ạ. Ta
có thể thay thế \(n^2+90n+2025\) bằng một biểu thức khác được không và tại sao ạ ?
Mong sớm nhận được phản hồi ạ. mình cảm ơn
Ta có
\(n^2< n^2+n+6< n^2+6n+9\)
\(\Leftrightarrow n^2< n^2+n+6< \left(n+3\right)^2\)
Vì n2 +n+ 6 là số chính phương nên
\(\left(n^2+n+6\right)=\left(\left(n+1\right)^2;\left(n+2\right)^2\right)\)
Thế vô giải ra được n = 5