K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

n+16 chia hết cho 2n+5 => 2(n+16) chia hết cho 2n+5 => 2n+32 chia hết cho 2n+5.

Mà 2n+5 chia hết cho 2n+5 => 2n+32-(2n+5) chia hết cho 2n+5.

=> 2n+32-2n-5 chia hết cho 2n+5 => 27 chia hết cho 2n+5

=> 2n+5\(\in\)Ư(27)={1;3;9;27;-1;-3;-9;-27} => 2n\(\in\){-4;-2;4;22;-6;-8;-14;-32}=> n\(\in\){-2;-1;2;11;-3;-4;-7;-16}

Mà n\(\in\)N => n\(\in\){2;11}

16 tháng 6 2017

Ai giúp mình nhanh đi...

20 tháng 2 2017

do n thuộc z => n+1; 2n-5 thuộc z

Ta có : n+1 chia hết cho 2n-5

=> 2n+2 chia hết cho 2n-5

=>2n-5+7 chia hết cho 2n-5

=> 7 chia hết cho 2n-5

=> 2n-5 thuộc ước 7 

=> 2n-5 thuộc {-1;1;-7;7}

=>2n thuộc {4;6;-2;12}

=> n thuộc {2;3;-1;6}

Vậy n= 2;3;-1;6

20 tháng 2 2017

n = -1 ; 2 ; 3 ; 6

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

24 tháng 11 2016

a) ta có    \(\frac{3n-2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

Để 3n+2 chia hết cho n-1 thì n-1\(\varepsilon\)Ư(5)={1;5}

=> n thuộc { 2;6}

b)\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)

Để 4n-2 chia hết cho 2n-1 thì 2n-1\(\varepsilon\)Ư(3)={1;3}

=> n thuộc { 1;2}

24 tháng 11 2016

sdgaef

1 tháng 12 2017

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

15 tháng 10 2017

\(n+3=\left(n+1\right)+2\)

mà \(n+1⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)\)

\(\Rightarrow n+1\in\hept{ }1;2\)

TH1: \(n+1=1\Leftrightarrow n=1-1=0\)

Th2: \(n+1=2\Leftrightarrow n=2-1=1\)

Vậy \(n\in\hept{ }0;1\)

\(3n+5=3\left(n-1\right)+7\)

mà \(3\left(n-1\right)⋮n-1\)

\(\Rightarrow7⋮n-1\)

\(\Rightarrow n-1\inƯ\left(7\right)\)

\(\Rightarrow n-1\in\hept{ }1;7\)

TH1: \(n-1=1\Leftrightarrow n=1+1=2\)

TH2: \(n-1=7\Leftrightarrow n=7+1=8\)

Vậy \(n\in\hept{ }2;8\)

\(4n-6=4n-4-2\)

\(\Leftrightarrow4n+4-8-2\)

\(\Leftrightarrow4\left(n+1\right)-8-2\)

\(\Leftrightarrow4\left(n+1\right)-10\)

mà \(2n+2=2\left(n+1\right)\)

mà \(4\left(n+1\right)⋮2\left(n+1\right)\)

\(\Leftrightarrow10⋮2\left(n+1\right)\)

\(\Leftrightarrow2\left(n+1\right)\inƯ\left(10\right)\)

\(\Leftrightarrow2\left(n+1\right)\in\hept{ }1;2;5;10\)

TH1: \(2\left(n+1\right)=1\Leftrightarrow n=-0.5\notin N\)

TH2: \(2\left(n+1\right)=2\Leftrightarrow n=0\in N\)

TH3: \(2\left(n+1\right)=5\Leftrightarrow n=1.5\notin N\)

TH4: \(2\left(n+1\right)=10\Leftrightarrow n=4\in N\)

Vậy \(n\in\hept{ }0;4\)

Nhớ k cho mình nhé! Thank you!!!

21 tháng 11 2017

n+3=(n+1)+2

mà n+1⋮n+1

⇒2⋮n+1

⇒n+1∈Ư(2)

⇒n+1∈{1;2

TH1: n+1=1⇔n=1−1=0

Th2: n+1=2⇔n=2−1=1

Vậy n∈{0;1

3n+5=3(n−1)+7

mà 3(n−1)⋮n−1

⇒7⋮n−1

⇒n−1∈Ư(7)

⇒n−1∈{1;7

TH1: n−1=1⇔n=1+1=2

TH2: n−1=7⇔n=7+1=8

Vậy n∈{2;8

4n−6=4n−4−2

⇔4n+4−8−2

⇔4(n+1)−8−2

⇔4(n+1)−10

mà 2n+2=2(n+1)

mà 4(n+1)⋮2(n+1)

⇔10⋮2(n+1)

⇔2(n+1)∈Ư(10)

⇔2(n+1)∈{1;2;5;10

TH1: 2(n+1)=1⇔n=−0.5∉N

TH2: 2(n+1)=2⇔n=0∈N

TH3: 2(n+1)=5⇔n=1.5∉N

TH4: 2(n+1)=10⇔n=4∈N

Vậy n∈{0;4