Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do n thuộc z => n+1; 2n-5 thuộc z
Ta có : n+1 chia hết cho 2n-5
=> 2n+2 chia hết cho 2n-5
=>2n-5+7 chia hết cho 2n-5
=> 7 chia hết cho 2n-5
=> 2n-5 thuộc ước 7
=> 2n-5 thuộc {-1;1;-7;7}
=>2n thuộc {4;6;-2;12}
=> n thuộc {2;3;-1;6}
Vậy n= 2;3;-1;6
a) ta có \(\frac{3n-2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để 3n+2 chia hết cho n-1 thì n-1\(\varepsilon\)Ư(5)={1;5}
=> n thuộc { 2;6}
b)\(\frac{4n-5}{2n-1}=\frac{2\left(2n-1\right)-3}{2n-1}=2-\frac{3}{2n-1}\)
Để 4n-2 chia hết cho 2n-1 thì 2n-1\(\varepsilon\)Ư(3)={1;3}
=> n thuộc { 1;2}
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
\(n+3=\left(n+1\right)+2\)
mà \(n+1⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\hept{ }1;2\)
TH1: \(n+1=1\Leftrightarrow n=1-1=0\)
Th2: \(n+1=2\Leftrightarrow n=2-1=1\)
Vậy \(n\in\hept{ }0;1\)
\(3n+5=3\left(n-1\right)+7\)
mà \(3\left(n-1\right)⋮n-1\)
\(\Rightarrow7⋮n-1\)
\(\Rightarrow n-1\inƯ\left(7\right)\)
\(\Rightarrow n-1\in\hept{ }1;7\)
TH1: \(n-1=1\Leftrightarrow n=1+1=2\)
TH2: \(n-1=7\Leftrightarrow n=7+1=8\)
Vậy \(n\in\hept{ }2;8\)
\(4n-6=4n-4-2\)
\(\Leftrightarrow4n+4-8-2\)
\(\Leftrightarrow4\left(n+1\right)-8-2\)
\(\Leftrightarrow4\left(n+1\right)-10\)
mà \(2n+2=2\left(n+1\right)\)
mà \(4\left(n+1\right)⋮2\left(n+1\right)\)
\(\Leftrightarrow10⋮2\left(n+1\right)\)
\(\Leftrightarrow2\left(n+1\right)\inƯ\left(10\right)\)
\(\Leftrightarrow2\left(n+1\right)\in\hept{ }1;2;5;10\)
TH1: \(2\left(n+1\right)=1\Leftrightarrow n=-0.5\notin N\)
TH2: \(2\left(n+1\right)=2\Leftrightarrow n=0\in N\)
TH3: \(2\left(n+1\right)=5\Leftrightarrow n=1.5\notin N\)
TH4: \(2\left(n+1\right)=10\Leftrightarrow n=4\in N\)
Vậy \(n\in\hept{ }0;4\)
Nhớ k cho mình nhé! Thank you!!!
n+3=(n+1)+2
mà n+1⋮n+1
⇒2⋮n+1
⇒n+1∈Ư(2)
⇒n+1∈{1;2
TH1: n+1=1⇔n=1−1=0
Th2: n+1=2⇔n=2−1=1
Vậy n∈{0;1
3n+5=3(n−1)+7
mà 3(n−1)⋮n−1
⇒7⋮n−1
⇒n−1∈Ư(7)
⇒n−1∈{1;7
TH1: n−1=1⇔n=1+1=2
TH2: n−1=7⇔n=7+1=8
Vậy n∈{2;8
4n−6=4n−4−2
⇔4n+4−8−2
⇔4(n+1)−8−2
⇔4(n+1)−10
mà 2n+2=2(n+1)
mà 4(n+1)⋮2(n+1)
⇔10⋮2(n+1)
⇔2(n+1)∈Ư(10)
⇔2(n+1)∈{1;2;5;10
TH1: 2(n+1)=1⇔n=−0.5∉N
TH2: 2(n+1)=2⇔n=0∈N
TH3: 2(n+1)=5⇔n=1.5∉N
TH4: 2(n+1)=10⇔n=4∈N
Vậy n∈{0;4
n+16 chia hết cho 2n+5 => 2(n+16) chia hết cho 2n+5 => 2n+32 chia hết cho 2n+5.
Mà 2n+5 chia hết cho 2n+5 => 2n+32-(2n+5) chia hết cho 2n+5.
=> 2n+32-2n-5 chia hết cho 2n+5 => 27 chia hết cho 2n+5
=> 2n+5\(\in\)Ư(27)={1;3;9;27;-1;-3;-9;-27} => 2n\(\in\){-4;-2;4;22;-6;-8;-14;-32}=> n\(\in\){-2;-1;2;11;-3;-4;-7;-16}
Mà n\(\in\)N => n\(\in\){2;11}
Ai giúp mình nhanh đi...