Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(x^2y+2x^2y+3x^2y+...+nx^2y=210x^2y\)
\(x^2y\left(1+2+3+4+...+n\right)=210x^2y\)
\(1+2+3+...+n=210x^2y:\left(x^2y\right)\)
\(1+2+3+...+n=210\)
\(\frac{\left(n-1\right):1+1}{2}.\left(n+1\right)=210\)
\(n\left(n+1\right):2=210\)
\(n.\left(n+1\right)=420=20.21\)
vậy n=20
\(x^2y+2x^2y+3x^2y+....+nx^2y=210x^2y\)
\(x^2y\left(1+2+3+...+n\right)=210x^2y\)
\(1+2+3+...+n=210\)
\(\frac{n\left(n+1\right)}{2}=210\)
\(n\left(n+1\right)=420\)
\(n\left(n+1\right)=20.21\)
\(\Rightarrow n=20\)
x^2.y+2x^2.y+3x^2.y+...+n.x^2y=210x^2.y
x^2.y(1+2+3+..+n)=210x^2.y
1+2+3+..+n=210
=>(n+1)(n-1+1)/2=210
(n+1)n/2=210
(n+1)n=420=21.20
=>n+1=21
n=20
\(1+2+3+...+n=\frac{\left(1+2+...+n\right)+\left(n+\left(n-1\right)+...+1\right)}{2}.\)
\(=\frac{\left(n+1\right)+\left(n+1\right)+...+\left(n+1\right)}{2}.\left(có.n.nhóm.n+1\right)\)
\(=\frac{n\left(n+1\right)}{2}.\)
ta có: x^2y+2x^2y+3x^2y+...+nx^2y=210x^2y
x^2y(1+2+3+4+...+n)=210x^2y
1+2+3+4+...+n=210x^2y/x^2y
1+2+3+4+...+n=210
(n-1):1+1/2.(n+1)=210
n(n+1)/2=210
n(n+1)=420=20.21
Vậy n=20
\(2.\)
\(2x^3-6x\)
\(\Leftrightarrow2x^3-6x=0\)
\(\Leftrightarrow2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{3}\end{cases}}\)
a) Ta có: \(M=x^2y+xy^2-5x^2y^2+x^3-2x^2y+6xy^2\)
\(=\left(x^2y-2x^2y\right)+\left(xy^2+6xy^2\right)-5x^2y^2+x^3\)
\(=x^3-x^2y+7xy^2-5x^2y^2\)
Bậc là 4
Ta có: \(N=3x^3+xy+y^2-x^2y^2-2-2xy+7y^2\)
\(=3x^3+\left(xy-2xy\right)+\left(y^2+7y^2\right)-x^2y^2-2\)
\(=3x^2+8y^2-xy-x^2y^2-2\)
Bậc là 4
Nguyễn Huy Tú giúp mình với nha