Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)+)Gọi d là số nguyên tố và là ƯCLN(4n+3,2n+3)
=>4n+3\(⋮\)d;2n+3\(⋮\)d
+)4n+3\(⋮\)d(1)
+)2n+3\(⋮\)d
=>2.(2n+3)\(⋮\)d
=>4n+6\(⋮\)d(2)
Từ(1) và (2)
=>(4n+6)-(4n+3)\(⋮\)d
=>4n+6-4n-3\(⋮\)d
=>3\(⋮\)d
Mà d nguyên tố
=>d=3
=>4n+3\(⋮\)d
=>4n+3\(⋮\)3
=>4n+3=3k(k\(\in\)N)
=>4n =3k+3
4n =3.(k+1)
n =3.(k+1):4
Mà 3 ko chia hết cho 4
=>k+1\(⋮\)4
=>k+1=4z(z\(\in\)N)
=>n =3.4z:4
=>n =3z
=>n \(\ne\)3z thì 4n+3 và 2n+3 nguyên tố cùng nhau
b)Làm tương tự phần a nha
Chúc bn học tốt
b) n + 3 \(⋮\) n - 1 <=> (n - 1) + 4 \(⋮\) n - 1
=> 4 \(⋮\) n - 1 (vì n - 1 \(⋮\) n - 1)
=> n - 1 ∈ Ư(4) = {±1; ±2; ±4}
Lập bảng giá trị:
n - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy n ∈ {2; 0; 3; -1; 5; -3}
a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:
\(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)
⇒ 4n + 6 - (4n + 3) ⋮ d ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d
⇒ d = 1; 3
Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì
2n + 3 không chia hết cho 3
2n không chia hết cho 3
n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
a) \(n=\left\{0;1;2;3\right\}\)
b) \(n=\left\{4;5;6\right\}\)
c) \(n=6\)
d) \(n=\left\{3;4;\right\}\)
a)n thuoc{1;2;3}
b)n thuoc{1;2;3;4;5;6}
c) n thuoc{1;2;4;5;6}
d)n thuoc{1;2;3;4;5;6}