Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}=3\)
Vậy với \(n\in Z\) thì \(\frac{9n+3}{3n+1}\in Z\)
Ta có: (9n+3 ) chia hết cho (3n+1)
=> ( 3 . 3.n + 3.1 ) chia hết cho ( 3 n + 1)
=> 3.( 3n + 1 ) chia hết cho ( 3n +1)
=> 3 chia hết cho (3n+1)
=> 3n + 1 E Ư ( 3)
Vậy: 3n+1 = { -3;-1;1;3}
=> n = { 0}
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:
9n+24 chia hết cho d
3n+4 chia hết cho d => 9n+12 chia hết cho d
=> 9n+24-(9n+12) chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12)
=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}
Giả sử ƯCLN(9n+24; 3n+4) khác 1
=> 3n+4 chia hết cho 4
=> 3n+4-4 chia hết cho 4
=> 3n chia hết cho 4
=> nchia hết cho 4
=> n = 4k
=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k
a, vì \(\frac{3n-1}{7n+5}\)thuộc Z suy ra : 3n - 1 chia hết cho 7n +5 => 7.( 3n - 1 ) chia hết cho 7n + 5
=> 21n - 7 chia hết cho 7n + 5 => 21n + 15 - 22 chia hết cho 7n + 5 => 3.( 7n + 5) - 22 chia hết cho 7n + 5
=> - 22 chia hết cho 7n + 5 ( vì 3.( 7n+ 5) chia hết cho 7n + 5 ) .
=> 7n + 5 là Ư(-22) = { -22, -11 , -2 ; -1; 1, 2, 11, 22 } đến đây dễ rồi bạn tự làm tiếp nhé.
b,vì \(\frac{n^{2014}+n^{2013}+2}{n+1}.\)thuộc Z nên ta có : \(n^{2014}+n^{2013}+2\)chia hết cho n + 1
=> \(n^{2013}\left(n+1\right)+2\)chia hết cho n +1
=> 2 chia hết cho n + 1 ( vì \(n^{2013}\left(n+1\right)\)chia hết cho n + 1 )
=> n + 1 là Ư(2) ={- 2; -1 ; 1; 2 } đến đây bạn tự làm tiếp nhé !
3n+3/n-4=3n+3/3n-12=3n-12+15/3n-12
=1+15/3n-12
=>15chia hết cho 3n-12
=>3n-12 thuộc Ư(15)
bạn tự tính tieép
\(\frac{9n+3}{3n+1}=\frac{3\cdot\left(3n+1\right)}{3n+1}=3\forall n\in Z\)
\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}\in Z\) nên với mọi số nguyên n thì \(\frac{9n+3}{3n+1}\in Z\)