Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:
\(n-2\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(n\) | \(3\) | \(4\) | \(5\) | \(8\) |
Vậy \(n\in\left\{3;4;5;8\right\}\)
b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:
\(n-1\) | \(1\) | \(2\) | \(4\) |
\(n\) | \(2\) | \(3\) | \(5\) |
Vậy \(n\in\left\{2;3;5\right\}\)
1 . goi UCLN ( 2n + 1,6n + 5 ) la d
=> 2n + 1 chia hết cho d (1)
6n + 5 chia hết cho d (2)
từ (1)=> 6 x ( 2n + 1 ) = 12n + 6 chia hết cho d (3)
từ (2) => 2 x ( 6n + 5 ) = 12n + 10 chia hết cho d (4)
Tu (3) va (4) => ( 12n + 10 ) - (12n + 6 ) chia het cho d
hay 4 chia hết cho d=> d thuộc { 1,2,4}
Mà d là lớn nhất => d = 4
2). 2x + 11 chia hết cho x + 3
(2x + 6 ) + 5 chia het cho x + 3
2 x ( x + 3 ) + 5 chia hết cho x + 3 (1)
Ma 2 x ( x + 3 ) chia het cho x + 3 (2)
Từ (1) và (2) => 5 chia hết cho x + 3
=> X + 3 thước U của 5 hay x + 3 thuộc { 1,5}
x thuộc { -2,2}
Mà x thuộc N => x = 2
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
Vì
Mà 4n - 1 chia 4 dư 3; do
a) n+5 chia hết cho n-1
Ta có: n+5 = (n-1)+6
=> n-1 và 6 cùng chia hết cho n-1 hay n-1\(\in\)Ư(6)={-1;1;-2;2;-3;3;-6;6}
=> n\(\in\){0;2;-1;3;-2;4;-5;7}
b) n+5 chia hết cho n+2
Ta có: n+5 = (n+2)+3
=> n+2 và 3 cùng chia hết cho n+2 hay n+2\(\in\)Ư(3)={-1;1;-3;3;}
=> n\(\in\){-3;-1;-5;1;}
c) 2n-4 chia hết cho n+2
Ta có: 2n-4 = 2(n+2)-8
=> 2(n+2) và 8 cùng chia hết cho n+2 hay n+2\(\in\)Ư(8)={-1;1;-2;2;-4;4;-8;8}
=> n\(\in\){-3;-1;-4;0;-6;2;-10;6}
d) 6n+4 chia hết cho 2n+1
Ta có: 6n+4 = 3(2n+1)+1
=> 3(2n+1) và 1 cùng chia hết cho 2n+1 hay 2n+1\(\in\)Ư(1)={-1;1;}
=> n\(\in\){-1;0}
e) 3-2n chia hết cho n+1
Ta có: 3-2n= -2(1+n)+5
=> -2(1+n) và 5 cùng chia hết cho n+1 hay n+1\(\in\)Ư(5)={-1;1;-5;5;}
=> n\(\in\){-2;0;-6;4;}
câu 1 mk hổng biết
câu 2 giải như sau
ta có : 12=3.4
A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)
=(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)
=3.(1+3)+33.(1+3)+....+32015.(1+3)
=3.4+33.4+....+32015.4
=4.(3+33+.....+32015)
Vì 4 chia hết cho 4=>4.(3+33+...+32015) (1)
Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12 (đpcm)
Vì n - 1 chia hết n -1 => 3(n -1) =3n -3 cia hết cho n-1
Ta có : 3n+10 - 3n -3 =7 chia hết cho n -1
=> n-1 thuộc Ư(7)
=> n - 1 thuộc {1;7;-1;-7}
=> n thuộc {2;8;0;-6}
Vậy : n thuộc {2;8;0;-6}
TÍCH TỚ NHÉ !
6n - 3 = 6n - 12 + 9 = -6.(2 - n) + 9 .: 2 - n => 9 .: 2 - n => 2 - n = -9 ; - 3 ; - 1 ; 1 ; 3 ; 9 => n = 11 ; 5 ; 3 ; 1 ; -1 ; -7
cảm ơn bạn