K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Phân số đã cho có dạng a+n+4\a với a=3;4;5;6;7

Do đó muốn các phân số trên tối giản thì (a+n+4) phải không chia hết cho 3;4;5;6;7 và ƯCLN(a+n+4;a) = 1 và n+4 là số nguyên tố

⇒n+4=11(vì 11 là số nguyên tố có 2 chữ số nhỏ nhất)

⇒n=7

Vậy n=7

23 tháng 4 2018

Câu 9 : Giải

\(\dfrac{18n+3}{21n+7}\)= \(\dfrac{3\left(6n+1\right)}{7\left(3n+1\right)}\) theo mình thấy thì các số 3 và 7 ; 3n+1 và 6n+1 là một số đôi nguyên tố cùng nhau

Cho nên, để phân số \(\dfrac{18n+3}{21n+7}\) là phân số tối giản thì 6n+1 không chia hết cho 7

Từ đó => n = - 7k + 1 (k thuộc Z)

13 tháng 3 2017

\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

\(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)

\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=\dfrac{1}{4}-\dfrac{1}{11}\)

\(=\dfrac{7}{44}\)

14 tháng 3 2017

Linh tinh

bài 1:tìm 1 phân số biết rằng khi cộng cả tử và mẫu phân số ấy cới mẫu số thì được phân số mới gấp 2 lần phân số cần tìm bài 2:tìm phân số \(\dfrac{a}{b}\) tối giản nhỏ nhất khác 0 sao cho khi chia \(\dfrac{a}{b}\) cho mỗi phân số \(\dfrac{7}{14}\) và \(\dfrac{21}{35}\) ta được kết quả là 1 số tự nhiên. bài 3:tìm phân số tối giản \(\dfrac{a}{b}\) lớn nhất (a,b thuộc N*)sao cho khi chia mỗi phân số...
Đọc tiếp

bài 1:tìm 1 phân số biết rằng khi cộng cả tử và mẫu phân số ấy cới mẫu số thì được phân số mới gấp 2 lần phân số cần tìm

bài 2:tìm phân số \(\dfrac{a}{b}\) tối giản nhỏ nhất khác 0 sao cho khi chia \(\dfrac{a}{b}\) cho mỗi phân số \(\dfrac{7}{14}\)\(\dfrac{21}{35}\) ta được kết quả là 1 số tự nhiên.

bài 3:tìm phân số tối giản \(\dfrac{a}{b}\) lớn nhất (a,b thuộc N*)sao cho khi chia mỗi phân số \(\dfrac{4}{15}\) ,\(\dfrac{6}{125}\) cho \(\dfrac{a}{b}\) ta được kết quả là 1 số tự nhiên.

bài 4:cho A=\(\dfrac{2n+1}{n+3}\) + \(\dfrac{3n-5}{n-3}\) - \(\dfrac{4n-5}{n-3}\)

a)tìm n để A là phân số tối giản

b)tìm n thuộc Z để A thuộc Z

bài 5:tìm n thuộc N để M=\(\dfrac{6n-3}{4n-6}\) đạt GTLN

bài 6:tìm GTLN và GTNN của A=\(\dfrac{ab}{a+b}\) (ab có gạch đầu)

bài 7 : tìm 1 số có 4 c/s vừa là số chính phương vừa là số lập phương

0