Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n+7}{n+2}=\frac{n+2}{n+2}+\frac{5}{n+2}=1+\frac{5}{n+2}\)
để p/s trên là số nguyên thì \(\frac{5}{n+2}\)là số nguyên =>5 chia hết cho n+2 hay n+2 thuộc ước của 5 E {+-1;=-5}
ta có
hình như Hà Trang Điệu TTSĐ xem sách giải y hệt không sai một chữ
a) Điều kiện \(n+2\ne0\Leftrightarrow n\ne-2\)
b) \(E=\frac{3n+7}{n+2}=\frac{3n+6+1}{n=2}=\frac{3\left(n+2\right)}{n+2}+\frac{1}{n+2}=3+\frac{1}{n+2}\)
Để E thuộc Z thì 1 phải chia hết cho n+2 hay n+2 là ước của 1
Ư(1) = {-1; 1}
+) n+2 = -1 => n = -3
+) n+2 = 1 => n = -1
Vậy n E {-3; -1} thì E thuộc Z
\(\frac{n-2}{n+3}\)=\(\frac{\left(n+3\right)-5}{n+3}\)=1+\(\frac{-5}{n+3}\)
Ta thấy 1 thuộc Z nên chỉ còn \(\frac{-5}{n+3}\)thuộc Z
<=> n+3 thuộc ước của (-5)={±1;±5}
<=> n ={-4;-2;-8;2}
Đặt A= như đã cho.
Để AEZ =>n+7 chia hết cho n-2.
=>n-2+9 chia hết cho n-2.
Mà n-2 chia hết cho n-2.
=>9 chia hết cho n-2.
=>n-2E{-9;-3;-1;1;3;9}.
=>nE{-7;-1;1;3;5;11}(tương ứng).
bn thử lại rồi kết luận là được.
tk mk nha các bn.
-chúc ai tk mk hoc jgioir-
Gọi \(\frac{n+7}{n-2}\) là A
\(A=\frac{n+7}{n-2}=\frac{n-2+9}{n-2}\)\(=1+\frac{9}{n-2}\)
Theo đề bài n là ước nguyên dương của 9
\(n-2=1\Rightarrow n=3\)
\(n-2=3\Rightarrow n=5\)
\(n-2=9\Rightarrow n=11\)
mink nghĩ đề bài phải là \(n\in Z\)thì A mới thuộc Z chứ bạn, nhưng mink theo đề bài làm thế kia, ai thấy đúng thì ủng hộ
7 E N là đúng
7 E Z là đúng
0 E N là đúng
0 E Z là đúng
-9 E Z là đúng
-9 E N là sai
11, 2 E Z là sai
Ta có \(2n-7=2\left(n+3\right)-13\)
vậy để 2n-7 chia hết cho n+3 thì 13 phải chia hết cho n+3
Tức là n+3 là ước của 13.
Ư(13)={-13,-1,1,13}
\(n+3=-13\Rightarrow n=-16\)
tương tự bạn sẽ tìm được n=-4;-2;10
\(\frac{2n-7}{n+3}\)= \(\frac{2n+3-10}{n+3}\)= \(\frac{2n+3}{n+3}\) - \(\frac{10}{n+3}\)= 2 - \(\frac{10}{n+3}\)
=> 10 chia hết cho n+3
=> n+3 E Ư(10)
Ư(10) E {-1; 1; -2; 2; -5; 5; -10; 10}
n+3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
n | -4 | -2 | -5 | -1 | -8 | 2 | -13 | 7 |
Vậy n E {-4; ;-2;-5; -1; -8; 2; -13; 7}
Để \(n\in Z\) thì:
\(E=\frac{2n+3}{7}\in Z\)
\(\Leftrightarrow2n+3⋮7\)
\(\Leftrightarrow2n+3\inƯ\left(7\right)=1;-1;7;-7\)
\(2n+3=1\Leftrightarrow2n=-2\Leftrightarrow n=1\)
\(2n+3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+3=7\Leftrightarrow2n=5\Leftrightarrow n=\frac{5}{2}\) (loại)
\(2n+3=-7\Leftrightarrow2n=-5\Leftrightarrow n=-\frac{5}{2}\) (loại)
Vậy \(n=1;-1\)
=> \(\frac{n+7}{n-2}\)= n + 7 : n - 2
=> n + 7 : n - 2 = n - 2 + 9 : n - 2
=> 9 : n - 2
=> n - 2 \(\in\) Ư( 9 ) = { -1 ; 1 ; -9 ; 9 }
=> n - 2 = -1 => n = 1
=> n - 2 = 1 => n = 3
=> n - 2 = -9 => n = -7
=> n - 2 = 9 => n = 11
=> n \(\in\) { 1 ; 3 ; -7 ; 11 }
Ta có: n+7/n-2 E Z => n+7 chia hết n-2
<=> (n-2) + 9 chia hết cho n-2
=> 9 chia hết cho n-2
=> n-2 E { 1, -1, 3, -3, 9, -9}
<=> n E {3, 1, 5, -1, 11, -7}