K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link này nhé!

14 tháng 12 2019

kết bạn vs mị ik

11 tháng 8 2016

Đặt \(k^2=n^2+31n+1984\) (k thuộc N)

Ta có \(n^2+30n+225< n^2+31n+1984< n^2+90n+2025\)

\(\Rightarrow\left(n+15\right)^2< k^2< \left(n+45\right)^2\)

Xét k2 trong khoảng trên được n = 565 và n = 1728 thỏa mãn đề bài.

17 tháng 6 2020

Cho mình hỏi tại sao lại xét \(k^2\) nằm trong hai khoảng đó vâỵ ạ. Ta

có thể thay thế \(n^2+90n+2025\) bằng một biểu thức khác được không và tại sao ạ ?

Mong sớm nhận được phản hồi ạ. mình cảm ơn

30 tháng 9 2016

sữa chỗ sai

she doesn't go to the cinema withus last Sunday

         A                  B                 C  D

30 tháng 9 2016

Giữa câu hỏi và caau trả lời có một sự liên quan không hề nhẹbatngo

10 tháng 8 2017

Để \(n^2-n+2\) là số chính phương \(\Leftrightarrow n^2-n+2=a^2\left(a\in Z\right)\)

\(\Leftrightarrow4n^2-4n+8=4a^2\)

\(\left(4n^2-4n+1\right)+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)

\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)

\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2a-1\right)=-7\)

=> 2n - 2a - 1 và 2n + 2a - 1 là ước của - 7

Đến đây liệt kê ước của - 7 rồi xét các TH !!!

13 tháng 8 2019

a, Với n = 1 thì \(n^3-n+2=1^3-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^3-n+2=2^3-2+2=8-2+2=8\)

=> Không phải là số chính phương

Với n > 2 thì \(n^3-n+2\)không phải là số chính phương vì \(\left[n-1\right]^2< n^3-\left[n-2\right]< n^2\)

b, Với n = 1 thì \(n^4-n+2=1^4-1+2=2\)

=> Không phải là số chính phương

Với n = 2 thì \(n^4-n+2=2^4-2+2=16=4^2\)=> Là số chính phương

Với n > 2 thì \(\left[n^2-1\right]^2< n^4-\left[n-2\right]< \left[n^2\right]^2\)

=> Không phải là số chính phương

Vậy n = 2