K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(A=n^3-2n^2+2n-4\)

\(=n^2\left(n-2\right)+2\left(n-2\right)\)

\(=\left(n-2\right)\left(n^2+2\right)\)

Để A là sô nguyên tố thì:  \(\orbr{\begin{cases}n-2=1\\n^2+2=1\end{cases}}\)

mà  \(n^2+2\ge2\)\(\forall n\)

nên  \(n-2=1\)\(\Leftrightarrow\)\(n=3\)

Thử lại: \(n=3\)thì   \(A=11\)là số nguyên tố

Vậy  n = 3

1 tháng 9 2020

Ta có : \(n^2+2n+2=\left(n+1\right)^2+1\ge1\forall n\)

Nên \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)\) là số nguyên tố thì :

\(\orbr{\begin{cases}n^2+2n+2=1\\n^2-2n+2=1\end{cases}}\)

+) Với \(n^2+2n+2=1\) \(\Leftrightarrow\left(n+1\right)^2=0\)

\(\Leftrightarrow n=-1\) ( Loại do n tự nhiên )

+) với \(n^2-2n+2=1\) \(\Leftrightarrow\left(n-1\right)^2=0\)

\(\Leftrightarrow n=1\) ( Thỏa mãn )

Thử lại với \(n=1\) thì \(\left(n^2+2n+2\right)\left(n^2-2n+2\right)=\left(1+2+2\right)\left(1-2+2\right)=5\) là số nguyên tố.

Vậy \(n=1\) thỏa mãn đề.

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

1 tháng 9 2020

(p là số nguyên tố)

TH1: n-2 =1 và 2n-5 =p

n-2 =1 => n=3 . Thay n=3 vào 2n-5 =2.3-5=1=>A không là số nguyên tố. (LOẠI)

TH2: 2n-5=1 và n-2=p

2n-5=1=>n=3. Thay n=3 vào n-2 =3-2 =1=> A không là số nguyên tố .(Loại)

TH3: 2n-5=-1 và n-2 = - p 

2n-5=-1=>n=2 . Thay n=2  vào n-2=1=> A không là số nguyên tố (loại)

TH4: n-2=-1 và 2n-5 =-p

n-2=-1=>n=1 thay n=1 vào 2n-5 =-3=> A là số nguyên tố (NHẬN)

1 tháng 9 2020

Mèo không hiểu lắm, còn cách nào khác không, hoặc là làm chi tiết hơn

Sửa đề: 2x^2-x+2+a chia cho 2x+1

\(\dfrac{2x^2-x+a+2}{2x+1}=\dfrac{2x^2+x-2x-1+a+3}{2x+1}=x-1+\dfrac{a+3}{2x+1}\)

Để số dư là 4 thì a+3=4

=>a=1

27 tháng 7 2016

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau

27 tháng 7 2016

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau

13 tháng 7 2016

ta có:

\(\frac{2n+1}{n+2}=\frac{2\left(2n+1\right)}{\left(2n+1\right)+3}\) 

=> Để số đã cho rút gọn được thì 2(2n+1) phải chia hết cho 3

2(2n+1) = 4n+2 = (3+1)n+2 = 3n+n+2 = 3n+(n+2)

=> n+2 chia hết cho 3

=> n = 3k+1 (trong đó k thuộc Z) để phân số \(\frac{2n+1}{n+2}\)rút gọn được.

Ta thấy

- Các số nguyên tố lớn hơn 2 không bao giờ chia hết cho 2

- Nếu p là số nguyên tố thì p^3 chỉ chia hết cho p^2 và p

Vì p^2 +2 là số nguyên tố nên nó không bao giờ chia hết cho 2

=> p^2 không chia hết cho 2 nên p không chia hết cho 2

=> p^3 không chia hết cho 2

Vậy p^3 +2 là số nguyên tố

a: Để A là số nguyên thì n-21 chia hết cho n+10

=>n+10-31 chia hết cho n+10

=>n+10 thuộc {1;-1;31;-31}

=>n thuộc {-9;-11;21;-41}

b: Để B là số nguyên thì 3n+9 chia hết cho n-4

=>3n-12+21 chia hết cho n-4

=>n-4 thuộc {1;-1;3;-3;7;-7;21;-21}

=>n thuộc {5;3;7;1;11;-3;25;-17}

c: C nguyên

=>6n+5 chia hết cho 2n-1

=>6n-3+8 chia hết cho 2n-1

=>2n-1 thuộc {1;-1;2;-2;4;-4;8;-8}

mà n nguyên

nên 2n-1 thuộc {1;-1}

=>n thuộc {1;0}