K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2017

Giả sử : phân số \(\dfrac{12n+1}{30n+2}\) chưa tối giản \(\left(n\in N\right)\)

\(\Rightarrow12n+1\)\(30n+2\) có ước chung là số nguyên tố

Gọi số nguyên tố \(d\) là ước chung của \(12n+1\)\(30n+2\) (\(d\in N\)*)

\(\Rightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\)

\(d\in N\)*\(;1⋮d\Rightarrow d=1\)

\(\Rightarrow\) Giả sử trên là sai

\(\Rightarrow\) Phân sô \(\dfrac{12n+1}{30n+2}\) tối giản với mọi \(n\in N\)

~ Chúc bn học tốt ~

11 tháng 4 2019

Gọi ƯCLN(12n+1;30n+2)=d (d\(\in\)N*)

\(\Rightarrow\) 12n+1\(⋮\)d và 30n+2\(⋮\)d

\(\Rightarrow\) 5(12n+1)\(⋮\)d và 2(30n+2)\(⋮\)d

\(\Rightarrow\) 60n+5\(⋮\)d và 60n+4\(⋮\)d

\(\Rightarrow\) (60n+5)-(60n+4)\(⋮\)d

\(\Rightarrow\) 1\(⋮\)d; d\(\in\)N*

\(\Rightarrow\) d=1

\(\Rightarrow\) phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản

Vậy ..........

4 tháng 3 2017

Gọi d là ƯCLN của 12n + 1 và 30n + 2 

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d 

=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d

=> d = 1

Vậy phân số \(A=\frac{12n+1}{30n+2}\)

4 tháng 3 2017

Gọi ƯCLN(12n+1;30n+2)=d => 12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d và 60n+4 chia hết cho d

=>(60n+5)-(60n-+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Phân số \(\frac{12n+1}{30n+2}\) có ƯCLN(12n+1;30n+2)=> \(\frac{12n+1}{30n+2}\) tối giản với mọi số nguyên n

18 tháng 4 2016

Để chứng minh \(\frac{12n+1}{30n+2}\) là phân số tối giản thì cân chứng tỏ 12n + 1 và 30n + 2 nguyên tố cùng nhau

Gọi ƯCLN ( 12n + 1 ; 30n + 2 )  = d            ( \(d\in n\) )

\(\Rightarrow\) 12n + 1 chia hết cho d     \(\Rightarrow\) 5 ( 12n + 1 ) chia hết cho d   \(\Rightarrow\) 60n + 5 chia hết cho d 

      30n + 2 chia hết cho d     \(\Rightarrow\) 2 ( 30n + 2 ) chia hết cho d   \(\Rightarrow\) 60n + 4 chia hết cho d

\(\Rightarrow\)     ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d

\(\Rightarrow\)     1 chia hết cho d 

\(\Rightarrow d\inƯ\left(1\right)=\left(1\right)\)

\(\Rightarrow\) d = 1

\(\Rightarrow\) ƯCLN ( 12n + 1; 30n + 2 ) = 1

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản

18 tháng 4 2016

Để chứng minh  12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d∈N)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> d∈Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy 12n+1/30n+2 là phân số tối giản

21 tháng 5 2020

Gọi \(\left(12n+1,30n+2\right)=d\)   \(\left(d\inℕ^∗\right)\)

Vì \(\left(12n+1,30n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\) Tử và mẫu của 2 phân số đó là 2 số nguyên tố cùng nhau nên \(\frac{12n+1}{30n+2}\) tối giản   (đpcm)

21 tháng 5 2020

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> ( 60n - 60n ) + ( 5 - 4 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1 ; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )

19 tháng 2 2016

Gọi d là ước chung của 12n+1 và 30n+2 ta có:

          5.(12n+1)-2.(30n+2)=60n+5-60n+4=1 chia hết cho d

Vậy d= 1 nên 12n+1 và 30n+2 là hai số nguyên tố cùng nhau, do đó \(\frac{12n+1}{30n+2}\) là phân số tối giản