Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/tim-kiem?id=269377&subject=1&q=T%C3%ACm+n+%C4%91%E1%BB%83+5n+3+v%C3%A0+4n+5+kh%C3%B4ng+ph%E1%BA%A3i+s%E1%BB%91+nguy%C3%AAn+t%E1%BB%91+c%C3%B9ng+nhau
Lời giải:
$n$ là số tự nhiên
Gọi ƯCLN \((5n+3,4n+5)=d\Rightarrow \left\{\begin{matrix} 5n+3\vdots d\\ 4n+5\vdots d\end{matrix}\right.\)
\(\Rightarrow n-2\vdots d\Rightarrow 5n-10\vdots d\)
$\Rightarrow (5n+3)-(5n-10)\vdots d$
$\Leftrightarrow 13\vdots d\Rightarrow d=1$ hoặc $13$
Để $5n+3, 4n+5$ không nguyên tố cùng nhau thì $d=13$
Tức là $5n+3\vdots 13$ và $4n+5\vdots 13$
$\Rightarrow n-2\vdots 13$. Đặt $n=13k+2$ với $k$ tự nhiên.
Khi đó $5n+3=5(13k+2)+3=13(5k+1)\vdots 13$ và $4n+5=4(13k+2)+5=13(4k+1)\vdots 13$
Vậy $n$ có dạng $13k+2$ với $k$ là số tự nhiên thì $5n+3$ và $4n+5$ không ntcn.
Gọi ƯCLN(4n+3,5n+2) = d(d ∈ ℕ )
⇒4n+3 ⋮d; 5n+2 ⋮d
⇒ 5.(4n+3)⋮d; 4.(5n+2)⋮d
⇒20n+15 ⋮d; 20n+8 ⋮d
⇒(20n+15-20n-8)⋮d
⇒7 ⋮d
Do đó d ∈ Ư(7)={1;7}
Mà đầu bài cho là (4n+3,5n+2) ≠ 1
⇒d=7
Vậy ƯCLN(4n+3,5n+2) = 7
Gọi d là ƯCLN(4n + 3; 5n + 2) ( d ∈ Z ) Nên ta có :
4n + 3 ⋮ d và 5n + 2 ⋮ d
=> 5(4n + 3) ⋮ d và 4(5n + 2) ⋮ d
=> 20n + 15 ⋮ d và 20n + 8 ⋮ d
=> (20n + 15) - (20n + 8) ⋮ d
=> 7 ⋮ d => d = { ± 1 ; ± 7 }
Vậy ƯC(4n + 3;5n + 2) = { ± 1 ; ± 7 }
Gọi ƯCNL(4n+3 ; 5n + 2) = d
Ta có : 4n + 3 chia hết cho d => 5(4n + 3) chia hết cho d
5n + 2 chia hết cho d => 4(5n + 2) chia hết cho d
=> 5(4n + 3) - 4(5n + 2) chia hết cho d
=> (20n + 15) - (20n + 8) chia hết cho d
=> 7 chia hết cho d => 4n + 3 và 5n + 2 ko nguyên tố cùng nhau
=> d ∈ Ư(7)
=> d = 7
=> ƯCLN(4n+3 ; 5n+2) = 7
Đặt ƯCLN( 4n + 3; 5n + 2) = d
=> 4n + 3 chia hết cho d
=> 5n + 2 chia hết cho d
<=> 20n + 15 - 20n - 8 = 7 chia hết cho d hay d\(\in\)Ư(7) = {1;7)
Vì: 4n + 3 và 5n + 2 là 2 số không nguyên tố cùng nhau nên chọn d = 7
Vậy: ƯCLN(4n + 3; 5n + 2) = 7
Gọi ƯCLN(4n+3,5n+1)=d(d\(\inℕ^∗\))
\(\Rightarrow\)4n+3\(⋮\)d
5n+1\(⋮\)d
\(\Rightarrow\)5.(4n+3)\(⋮\)d
4.(5n+1)\(⋮\)d
\(\Rightarrow\)20n+15\(⋮\)d
20n+4\(⋮\)d
\(\Rightarrow\)(20n+15-20n-4)\(⋮\)d
\(\Rightarrow\)11\(⋮\)d
Do đó d \(\in\)Ư(11)={1;11}
Mà đầu bài cho là (4n+3,5n+1)\(\ne\)1
\(\Rightarrow\)d=11
Vậy ƯCLN(4n+3,5n+1)=11