Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Gọi ƯC nguyên tố của 4n+3 và 2n-1 là d. Ta có:
4n+3 chia hết cho d => 4n-2+5 chia hết cho d
2n-1 chia hết cho d => 4n-2 chia hết cho d
=> 4n-2+5-(4n-2) chia hết cho d
=> 5 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 5
=> 2n-1+5 chia hết cho 5
=> 2n+4 chia hết cho 5
=> 2(n+2) chia hết cho 5
=> n+2 chia hết cho 5
=> n = 5k-2
=> Vậy để phân số tối giản thì n\(\ne\)5k-2
a) Để A thuộc Z thì :
\(4n+1⋮2n-3\)
\(\Rightarrow4n-6+7⋮2n-3\)
Ta có : \(4n-6⋮2n-3\)
\(\Rightarrow7⋮2n-3\)
\(\Rightarrow2n-3\in\left(1;-1;7;-7\right)\)
\(\Rightarrow2n\in\left(4;2;10;-4\right)\Leftrightarrow n\in\left(2;1;5;-2\right)\)
b) Để A là phân số tối giản thì n không là ước của 7
a)Ta có \(A\in Z\)
\(\Rightarrow4n+1⋮2n-3\)
\(\Rightarrow4n+4⋮2n\)
\(\Rightarrow2n+2⋮n\)
Mà \(2n⋮n\)
\(\Rightarrow2⋮n \)\(\Rightarrow n\inƯ\left(2\right)\)
=> n = -2;-1;1;2