Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow n^2+13n-12n-156+143⋮n+13\)
\(\Leftrightarrow n+13\in\left\{1;-1;11;-11;13;-13;143;-143\right\}\)
hay \(n\in\left\{-12;-14;-2;-24;0;-26;130;-156\right\}\)
b: \(\Leftrightarrow n^2-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
a: \(4n-5⋮n\)
\(\Leftrightarrow-5⋮n\)
hay \(n\in\left\{1;-1;5;-5\right\}\)
b: \(\Leftrightarrow n^2+3n-2n-6-7⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-2;-4;4;-10\right\}\)
c: \(\Leftrightarrow n^2-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
A = n3-n - 12n= n(n2-1)-12n=n(n-1)(n+1)-12n
ta có 12n chia hết 6
n(n-1)(n+1) là tích 3 số nguyên liên tiếp chia hết cho 6. Vậy a chia hết cho 6
nhớ k cho mik nhá
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=1-\frac{13}{n+3}\)
Để \(n^2+3n-13\) chia hết cho n+3 thì 13 phải chia hết cho n+3 hay n+3 là ước của 13
=> n+3={-13; -1; 1; 13} => n={-16; -4; -2; 10}
13n = 13n - 13 + 13
= 13(n - 1) + 13
Để 13n ⋮ (n - 1) thì 13 ⋮ (n - 1)
⇒ n - 1 ∈ Ư(13) = {-13; -1; 1; 13}
⇒ n ∈ {-12; 0; 2; 14}
Tổng của chúng là:
-12 + 0 + 2 + 14 = 4
Ta có:3n+4+3n+2+3n+3
=3n.34+3n.32+3n.33
=3n.81+3n.9+3n.27
=3n.(81+9+27)
=3n.117
=3n.9.13 chia hết cho 13
Vậy với mọi n thì 3n+4+3n+2+3n+3 chia hết cho 13