K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

=> \(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

=> \(1-\frac{1}{2n+1}=\frac{50}{51}\)

=> \(\frac{1}{2n+1}=1-\frac{50}{51}=\frac{1}{51}\)

=> 2n + 1 = 51 

=> 2n = 50

=> n = 25

Vậy n = 25

24 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

=> \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

=> \(1-\frac{1}{n+1}=\frac{49}{50}\)

=> \(\frac{1}{n+1}=1-\frac{49}{50}=\frac{1}{50}\)

=> n + 1 = 50 => n = 49

24 tháng 8 2020

n=2450

30 tháng 6 2023

a, Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có:

a +2 -7 -1 1 7
 -9 -3 -1 5

Theo bảng trên ta có:

\(a\) \(\in\) { -9; -3; -1; 5}

b, 2a + 1 \(\in\) Ư(12)

    Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}

lập bảng ta có:

2a+1 -12 -6 -4 -3 -2 -1 1 2 3 4 6 12

a

 

-11/2

loại

-7/2

loại

-5/2

loại

-2

nhận

-3/2

loại

-1

nhận

0

nhận

1/2

loại

1

nhận

3/2

loại

5/2

loại

11/2

loại

 

Theo bảng trên ta có các giá trị nguyên của a thỏa mãn đề bài là:

\(\in\) {- 2; - 1; 0; 1}

 

30 tháng 6 2023

n + 5 \(⋮\) n - 2

n - 2 + 7 ⋮ n - 2

            7 ⋮ n -2

Ư(7) ={ -7; -1; 1; 7}

Lập bảng ta có:

n - 2 -7 -1 1 7
n -5 1 3 9

Theo bảng trên ta có:

\(\in\) { -5; 1; 3; 9}

 

 

25 tháng 8 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{n\left(n+1\right)}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow1-\frac{1}{n+1}=\frac{49}{50}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{50}\)

\(\Rightarrow n+1=50\)

\(\Rightarrow n=49\)

\(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2n+1}=\frac{50}{51}\)

\(\Rightarrow\frac{1}{2n+1}=\frac{1}{51}\)

\(\Rightarrow2n+1=51\)

\(\Rightarrow2n=50\)

\(\Rightarrow n=25\)

9 tháng 7 2019

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x-1}{3}=\frac{y-1}{4}=\frac{z+2}{5}=\frac{z-1+y-1+z+2}{3+4+5}=\frac{-36}{12}=-3\)

=> \(\hept{\begin{cases}\frac{x-1}{3}=-3\\\frac{y-1}{4}=-3\\\frac{z+2}{5}=-3\end{cases}}\)  => \(\hept{\begin{cases}x-1=-9\\y-1=-12\\z+2=-15\end{cases}}\) => \(\hept{\begin{cases}x=-8\\x=-11\\x=-13\end{cases}}\)

Vậy ...

Trả lời:

Bài 1 : \(\text{(3x - 5)=4}\)

         \(\text{3x - 5=4}\)

         \(\text{3x =4+5}\)

         \(\text{3x =9}\)

          \(x=\frac{9}{3}\)

         \(x=3\)

Vậy    \(x=3\)

~ Học tốt ~

Bài 2:

a) A = \(\frac{3n+9}{n-4}\)

Để \(\frac{3n+9}{n-4}\) có giá trị là 1 số nguyên thì:

\(3n+9⋮n-4\)

hay \(3n-12+21⋮n-4\)

  \(3.\left(n-4\right)+21⋮n-4\)

\(\Rightarrow21⋮n-4\) ( vì \(3.\left(n-4\right)⋮n-4\)

\(\Rightarrow n-4\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

Vậy   \(n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

~ Học tốt ~

5 tháng 8 2020

Bài 1

Ta có:\(\left(x^2-x+a\right)\left(x+1\right)=x^3+x^2-x^2-x+ax+a=x^3-x\left(a-1\right)+a\)

Khi đó:

\(x^3+x\left(1-a\right)+a=bx^2+cx+2\)

Do đó \(1-a=c;a=2;b=0\Rightarrow a=2;b=0;c=-1\)

Bài 2:

\(A=\left(n^2+2n-5\right)\left(n+2\right)-2n^3+n+10\)

\(=n^3+2n^2+2n^2+4n-5n-10-2n^3+n+10\)

\(=-n^3+4n^2\)

\(=n^2\left(4-n\right)\)

Lập luận với n chẵn thì cái trên luôn chia hết cho 8

5 tháng 8 2020

1. ( x2 - x + a )( x + 1 ) = x3 + bx2 + cx + 2

<=> x3 + x2 - x2 - x + ax + a = x3 + bx2 + cx + 2

<=> x3 + 0x2 + ( a - 1 )x + a = x3 + bx2 + cx + 2

<=> \(\hept{\begin{cases}b=0\\a-1=c\\a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=0\\c=1\end{cases}}\)

2. n chẵn => n có dạng 2k ( \(k\inℕ^∗\))

Thế vào ta được :

A = [ ( 2k )2 + 2.2k - 5 )( 2k + 2 ) - 2(2k)3 + 2k + 10 

A = ( 4k2 + 4k - 5 )( 2k + 2 ) - 16k3 + 2k + 10

A = 8k3 + 16k2 - 2k - 10 - 16k3 + 2k + 10

A = -8k3 + 16k2 = -8k2(k-2) \(⋮\)8

=> A chia hết cho 8 với mọi n chẵn ( đpcm )