K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Đề bị lỗi hiển thị rồi. Bạn nên gõ đề bằng công thức toán để mọi người hiểu đề của bạn hơn nhé.

27 tháng 3 2021

\(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+8^n.4+8^n.2\)\(=11.25^n+6.8^n\)

Vì 25 = 8 (dư 17)

➩ \(11.5^{2n}+3^{3n+2}+2^{3n+1}\)\(=11.25^n+6.8^n\)\(=11.8^n+6.8^n=17.8^n=0\) (dư 17)

Hay \(11.5^{2n}+3^{3n+2}+2^{3n+1}\) ⋮ 17

4 tháng 8 2015

Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:

9n+24 chia hết cho d

3n+4 chia hết cho d => 9n+12 chia hết cho d

=> 9n+24-(9n+12) chia hết cho d

=> 12 chia hết cho d

=> d thuộc Ư(12)

=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}

Giả sử ƯCLN(9n+24; 3n+4) khác 1

=> 3n+4 chia hết cho 4

=> 3n+4-4 chia hết cho 4

=> 3n chia hết cho 4

=> nchia hết cho 4

=> n = 4k

=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k

28 tháng 1 2018

n - 2 là ước của 9n - 32
=> 9n - 32 chia hết cho n - 2
=> 9n - 18 - 14 chia hết cho n - 2
=> 9(n - 2) - 14 chia hết cho n - 2
Có 9(n - 2) chia hết cho n-2
=> -14 chia hết cho n - 2
=> n - 2 thuộc Ư(-14)
=> n - 2 thuộc {1; -1; 2; -2; 7; -7; 14; -14}
=> n thuộc {3; 1; 4; 0; 9; -5; 16; -12}

p/s : kham khảo

27 tháng 7 2016

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau

27 tháng 7 2016

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau