Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMNH và ΔMPH có
MN=MP(gt)
\(\widehat{NMH}=\widehat{PMH}\)(MH là tia phân giác của \(\widehat{NMP}\))
MH là cạnh chung
Do đó: ΔMNH=ΔMPH(c-g-c)
b) Ta có: ΔMNH=ΔMPH(cmt)
⇒\(\widehat{MHN}=\widehat{MHP}\)(hai góc tương ứng)
mà \(\widehat{MHN}+\widehat{MHP}=180^0\)(hai góc kề bù)
nên \(\widehat{MHN}=\widehat{MHP}=\frac{180^0}{2}=90^0\)
⇒MH⊥NP(đpcm)
c) Xét ΔDMH vuông tại D và ΔEMH vuông tại E có
MH là cạnh chung
\(\widehat{DMH}=\widehat{EMH}\)(do MH là tia phân giác của \(\widehat{NMP}\), D∈MN, E∈MP)
Do đó: ΔDMH=ΔEMH(cạnh huyền-góc nhọn)
⇒MD=ME
Xét ΔMDE có MD=ME(cmt)
nên ΔMDE cân tại M(định nghĩa tam giác cân)
⇒\(\widehat{MDE}=\frac{180^0-\widehat{M}}{2}\)(số đo của một góc ở đáy trong ΔMDE cân tại M)(1)
Ta có: ΔMNP cân tại M(gt)
⇒\(\widehat{MNP}=\frac{180^0-\widehat{M}}{2}\)(số đo của một góc ở đáy trong ΔMNP cân tại M)(2)
Từ (1) và (2) suy ra \(\widehat{MDE}=\widehat{MNP}\)
mà \(\widehat{MDE}\) và \(\widehat{MNP}\) là hai góc ở vị trí đồng vị
nên DE//NP(dấu hiệu nhận biết hai đường thẳng song song)
a) Xét 2 \(\Delta\) \(MNH\) và \(MPH\) có:
\(MN=MP\left(gt\right)\)
\(\widehat{NMH}=\widehat{PMH}\) (vì \(MH\) là tia phân giác của \(\widehat{M}\))
Cạnh MH chung
=> \(\Delta MNH=\Delta MPH\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta MNH=\Delta MPH.\)
=> \(\widehat{MHN}=\widehat{MHP}\) (2 góc tương ứng).
+ Ta có: \(\widehat{MHN}+\widehat{MHP}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{MHN}=\widehat{MHP}\left(cmt\right).\)
=> \(2.\widehat{MHN}=180^0\)
=> \(\widehat{MHN}=180^0:2\)
=> \(\widehat{MHN}=90^0.\)
=> \(\widehat{MHN}=\widehat{MHP}=90^0\)
=> \(MH\perp NP.\)
c) Ta có: \(\widehat{NMH}=\widehat{PMH}\) (vì \(MH\) là tia phân giác của \(\widehat{M}\)).
=> \(\widehat{DMH}=\widehat{EMH}.\)
Xét 2 \(\Delta\) vuông \(MDH\) và \(MEH\) có:
\(\widehat{MDH}=\widehat{MEH}=90^0\left(gt\right)\)
Cạnh MH chung
\(\widehat{DMH}=\widehat{EMH}\left(cmt\right)\)
=> \(\Delta MDH=\Delta MEH\) (cạnh huyền - góc nhọn).
=> \(MD=ME\) (2 cạnh tương ứng).
=> \(\Delta MDE\) cân tại \(M.\)
=> \(\widehat{MDE}=\widehat{MED}\) (tính chất tam giác cân).
=> \(\widehat{MDE}=\widehat{MED}=\frac{180^0-\widehat{M}}{2}\) (1).
+ Xét \(\Delta MNP\) có:
\(MN=MP\left(gt\right)\)
=> \(\Delta MNP\) cân tại \(M.\)
=> \(\widehat{MNP}=\widehat{MPN}\) (tính chất tam giác cân).
=> \(\widehat{MNP}=\widehat{MPN}=\frac{180^0-\widehat{M}}{2}\) (2).
Từ (1) và (2) => \(\widehat{MDE}=\widehat{MNP}.\)
Mà 2 góc này nằm ở vị trí đồng vị.
=> \(DE\) // \(NP\left(đpcm\right).\)
Chúc bạn học tốt!
Hình vẽ bạn tự vẽ nha
Trước hết chứng minh :(tự chứng minh lun)
Cho tam giác ABC vuông cân tại A . Chứng minh \(\sqrt{2}\cdot AB=BC\)(*)
Xét tam giác KDM và tam giác IEM ta có:
KM=MI (gt)
KMD= IME (gt);
MD=ME (gt);
=> tam giác KDM = tam giác IEM (c.g.c);
=> KD= EI (tương ứng);
Lại có NMP=90 (gt) => NMK+ KMP=90
=> IME+ KMP =90 => IMK =90 mà KM=MI
=> tam giác KMI vuông cân tại M
Xét tam giác NMP vuông cân tại M có MNH=45 mà MHN=90 (do MH là đường cao)
=>Tam giác MHN vuông cân tại H
Áp dụng (*) vào tam giác KMI vuông cân tại M và tam giác MHN vuông cân tại H ta được:
\(\hept{\begin{cases}\sqrt{2}\cdot MH=MN\\\sqrt{2}\cdot KM=KI\end{cases}}\)mà \(KM\ge MH\)
\(\Rightarrow KI\ge MN\)
Xét 3 điểm K,E,I ta có:
\(KE+EI\ge KI\)
hay \(KE+KD\ge MN\)
Hoàng Nguyễn Văn Dòng thứ 5 dưới lên sai rồi mem,tự coi lại nha,không thể như thế được đâu.Tại sao \(KM\ge MH\) lại suy ra \(KI\ge MN\) được ??
a) Xét \(\Delta\)MEQ và MNQ có :
^M1 = ^M2 (gt)
ME = MN ( gt)
MQ : cạnh chung
=> \(\Delta\)MEQ và MNQ (c-g-c)
=> EQ = NQ ( 2 cạnh tương ứng )
b) Vì \(\Delta\)MEQ và MNQ (cmt)
=> ^MNQ = ^MEQ ( 2 góc tương ứng )
Mà \(\left\{{}\begin{matrix}\widehat{HNQ}+\widehat{MNQ}=180^o\\\widehat{PEQ}+\widehat{MEQ}=180^o\end{matrix}\right.\)=> \(\widehat{HNQ}=\widehat{PEQ}\)
Xét \(\Delta\)HNQ và \(\Delta\)PEQ có :
\(\widehat{HNQ}=\widehat{PEQ}\)(cmt)
NQ = EQ (cmt )
\(\widehat{NQH}=\widehat{PQE}\) (2 góc đối đỉnh )
=> \(\Delta\)HNQ và \(\Delta\)PEQ( g - c - g)
=> NH = EP ( 2 cạnh t/ứng)
Mà MN = ME (gt)
=> MH = MP
Xét \(\Delta\)EMH và \(\Delta\)NMP có :
^M : góc chung
MH = MP ( cmt)
MN = ME (gt )
=> \(\Delta\)EMH và \(\Delta\)NMP (c - g - c)
c) Vì \(\Delta\)HNQ và \(\Delta\)PEQ
\(\Delta\)
Hình bạn tự vẽ nha
a, Xét tam giác MQN và tam giác MQE có :
\(\widehat{NMQ}\) = \(\widehat{EMQ}\) ( vì MQ là tia phân giác )
MQ : cạnh chung
MN = ME (giả thiết )
Vậy tam giác MQN = tam giác MQE (c.g.c )
Ta có: \(\hept{\begin{cases}mn=p\\np=m\\mp=n\end{cases}}\)Nhân theo vế: \(\left(mnp\right)^2=mnp\Leftrightarrow mnp\left(mnp-1\right)=0\Leftrightarrow\orbr{\begin{cases}mnp=0\\mnp=1\end{cases}}\)
Khi mnp=0,với m hoặc n hoặc p=0 thì ta luôn tìm được 2 số còn lại cũng bằng 0,hay \(m=n=p=0\)
Khi mnp=1,kết hợp với m;n;p nguyên ,ta tim được \(m=n=p=1\)hoặc \(m;n;p\)là hoán vị \(-1;-1;1\)
Sai đề rùi bạn ui :v
Câu b tại s MN // NP à ? ( đề đúng cs pk là MN // PH ?)
Câu c Tại s K ; P ; M thẳng hàng ak ? Mong bạn xemm lại đề hộ mình :D
Ta có: \(mn=p\) mà \(n=mp;m=np\) nên ta có :
\(mp.np=p\Leftrightarrow mnp^2=p\)
Với p = 0, ta có m = n = 0
Với p khác 0, ta có: \(mp.np=p\Leftrightarrow\text{}\text{}mnp=1\Leftrightarrow p^2=1\)
Với p = 1, ta có : \(mn=1;m=n\Rightarrow\orbr{\begin{cases}m=n=1\\m=n=-1\end{cases}}\)
Với p = -1, ta có: \(mn=-1;m=-n\Rightarrow\orbr{\begin{cases}m=1;n=-1\\m=-1;n=1\end{cases}}\)
Vậy ta có các bộ số (m;n;p) thỏa mãn là: (0;0;0) , (1;1;1) , (-1; -1;1) , (1; -1; -1) , (-1; 1; -1).
mn . mp .np = n.m.p
=> (mnp)2 =mnp
TH1 : mnp khác 0
=> mnp = 1
=> m=n=p=1
TH2 mnp = 0
=> m=n=p=0