Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A = \(\frac{3n+2}{n-5}=\frac{3\left(n-5\right)+17}{n-5}=3+\frac{17}{n-5}\)
Để A thuộc Z thì 17 \(⋮\)n - 5 => n - 5 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng :
n - 5 | 1 | -1 | 17 | -17 |
n | 6 | 4 | 22 | -12 |
Vậy n thuộc {6;4;22;-12} thì A thuộc Z
A=(3n-15)+17/n-5
A=3+ 17/n-5
A thuoc Z thi 3 + 17/n-5 thuoc Z -->17/n-5 thuoc Z
-->n-5 thuoc Ư(17)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)(nhân mỗi vế với 1/2)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\Rightarrow x=2010\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}\right)=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)\(=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)
\(\Rightarrow x+1=2011\)
\(\Rightarrow x=2010\)
\(\frac{n-2}{n+2}-\frac{n-1}{n+2}+\frac{-4}{n+2}=\frac{n-2-n-1+\left(-4\right)}{n+2}=\frac{\left(n-n\right)-2-1+\left(-4\right)}{n+2}=\frac{-7}{n+2}\)
\(\Rightarrow n+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(n+2\) | \(-7\) | \(-1\) | \(+1\) | \(+7\) |
\(n\) | \(-9\) | \(-3\) | \(-1\) | \(5\) |
Để A thuộc Z
=> n + 2 chia hết cho n - 5
=> n - 5 + 5 + 2 chia hết cho n - 5
=> 7 chia hết cho n - 5
=> n - 5 thuộc Ư(7) = {1 ; -1; 7 ; -7}
Xét từng giá trị , ta có :
n = {6 ; 4 ; 12 ; -2}
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=>n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
Ta thấy nếu mẫu số đầu và mẫu số của kết quả là 2 thì mẫu số sau cũng là 2
=> n = 2
Ta có
\(\frac{m}{2}-\frac{2}{2}=\frac{1}{2}\)
\(\frac{m}{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow m=3;n=2\)
5/2 -2/1=1/2 với m=5;n=1
3/2-2/2=1/2 với m=3;n=2
-3/2-2/-1=1/2 với m=-3;n=-1
-1/2-2/-2 =1/2 với m=-1;n=-2