Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk : x^2-3x+1 >=0
Đặt : \(\sqrt{x^2-3x+1}\)= a
pt <=> a^2+4 = 4a
<=> a^2-4a+4 = 0
<=> (a-2)^2 = 0
<=> a-2 = 0
<=> a=2
<=> \(\sqrt{x^2-3x+1}\)= 2
<=> x^2-3x+1 = 4
<=> x^2-3x-3 = 0
<=> (x^2-3x+2,25)-5,25 = 0
<=> (x-3/2)^2 = 21/4
<=> x = \(\frac{3+-\sqrt{21}}{2}\)(tm)
Vậy ...............
Tk mk nha
a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)
=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)
=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
b/ B>2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)
<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)
c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0
Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0
Bài này dùng pp miền giá trị cx đc nè:
\(B=\frac{2\sqrt{x}-1}{x+2\sqrt{x}+1}\)
\(\Leftrightarrow Bx+2B\sqrt{x}+B=2\sqrt{x}-1\)
\(\Leftrightarrow Bx+2\sqrt{x}\left(B-1\right)+B+1=0\) (1)
Để pt(1) có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(B-1\right)^2-B\left(B+1\right)\ge0\)
\(\Leftrightarrow-3B+1\ge0\Leftrightarrow B\le\frac{1}{3}\)
+) \(B=\frac{1}{3}\Rightarrow x=4\left(tm\right)\)
Vậy \(MaxB=\frac{1}{3}\Leftrightarrow x=4\)
\(B\le\frac{x^2+25-x^2}{2}=\frac{25}{2}\)
\(\Rightarrow B_{max}=\frac{25}{2}\) khi \(\left|x\right|=\sqrt{25-x^2}\Leftrightarrow x=\pm\frac{5\sqrt{2}}{2}\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y