Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là biểu thức cần CM
ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh )
Áp dụng BĐT quen thuộc x² + y² ≥ 2xy
a^4 + b² ≥ 2a²b (1)
b^4 + c² ≥ 2b²c (2)
c^4 + a² ≥ 2c²a (3)
a: \(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)-\sqrt{x^3}\)
\(=1-x\sqrt{x}-x\sqrt{x}\)
\(=1-2x\sqrt{x}\)
b: \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\cdot\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\left(\dfrac{\left(1-\sqrt{a}\right)\cdot\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right)\)
\(=\left(\dfrac{1}{\sqrt{a}+1}\right)^2\cdot\left(a+\sqrt{a}+1+\sqrt{a}\right)\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
- Đặt \(u=\sqrt{x}\). Khi đó :
+) \(u\ge0\)
+) \(A=\frac{1+u^2}{\left(1+u\right)^2}\)
Ta có : \(2\left(1+u^2\right)\ge\left(1+u\right)^2\Leftrightarrow2+2u^2\ge1+u^2+2u\Leftrightarrow1-2u+u^2\ge0\)
\(\Leftrightarrow\left(1-u\right)^2\ge0\)( luôn đúng )
\(\Rightarrow A\ge\frac{1}{2}\)
Khi u = 1 thì \(A=\frac{1}{2}\). Vậy min \(A=\frac{1}{2}\)
- Đặt v = 1+ u . Khi đó :
+) v > 1
+) \(A=\frac{1+\left(v-1\right)^2}{v^2}=\frac{v^2-2u+2}{v^2}=1-\frac{2}{v}+\frac{2}{v^2}\)
\(=2\left[\left(\frac{1}{v}\right)^2-\left(\frac{1}{v}\right)\right]+1=2\left[\left(\frac{1}{v}\right)-\frac{1}{2}\right]^2+\frac{1}{2}\)
- Vì \(v\ge1\)\(\frac{1}{v}\le1\Rightarrow-\frac{1}{2}\le\frac{1}{v}-\frac{1}{2}\le\frac{1}{2}\)
\(\Rightarrow a\le\left|\frac{1}{v}-\frac{1}{2}\right|\le\frac{1}{2}\Rightarrow\frac{1}{2}\le2\left|\frac{1}{v}-\frac{1}{2}\right|^2+\frac{1}{2}\le1\Rightarrow\frac{1}{2}\le A\le1\)
Ta thấy :
+) khi v = 2 ( tức là khi x = 1 ) thì \(A=\frac{1}{2}\)
+) khi v = 1 ( tức là khi x = 0 ) thì A = 1
Vậy maxA = 1 và min\(A=\frac{1}{2}\)
\(A=\frac{x+1}{x+1+2\sqrt{x}}=1-\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2}\le1\)
Dấu "=" xảy ra <=> x = 0
=> Max A = 1 <=> x = 0