Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\)
\(A=\left(x+1\right)^2-\left(2x-3\right)^2-15\ge-15\)
\(A_{min}=-15\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{3}{2}\end{cases}}}\)
P/s tham khảo nha
\(B=x^2-2xy+4y^2-2x-10y+2018\)
\(B=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(3y^2-12y+12\right)+2005\)
\(B=\left(x-y\right)^2-2\left(x-y\right)+1+3\left(y-2\right)^2+2005\)
\(B=\left(x-y-1\right)^2+3\left(y-2\right)^2+2005\ge2005\)
VÌ \(\left(x-y-1\right)^2+3\left(y-2\right)^2\ge0\forall x;y\)
DẤU "="XẢY RA KHI Y=2;X=3
Sorry nhá mk nhầm :
Ta có : A = 4x2 - 4x + 2017
=> A = (2x)2 - 4x + 1 + 2016
=> A = (2x - 1)2 + 2016
Mà ; (2x - 1)2 \(\ge0\forall x\)
Nên : A = (2x - 1)2 + 2016 \(\ge2016\forall x\)
Vậy Amin = 2016 , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
Ta có:
\(\left|2x-2017\right|\ge2x-2017\forall x\)
\(\left|2x-2018\right|=\left|2018-2x\right|\ge2018-2x\forall x\)
\(\Rightarrow\left|2x-2017\right|-\left|2x-2018\right|\ge1\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}2x-2017\ge0\\2x-2018\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{2017}{2}\\x\le\frac{2018}{2}\end{cases}}}\)