K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

Đặt √x = a > 0 thì có

P.2.a(a + 1) - (a - 2)(a - 3) = 0

<=> (2P - 1)x2 + (2P + 5)x - 6 = 0

Để có nghiệm thì: 

∆ = (2P + 5)2 - 4.6.(2P - 1) >= 0

Xong rồi đó. Tìm được P >= đó bé

19 tháng 5 2017

2, rút gọn B=x^2/(y-1)+y^2/(x-1) 

AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y 

=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8 

minB=8 

19 tháng 5 2017

Câu 1:

Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)

\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)

\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)

Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)

Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)

\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)

Lại áp dụng BĐT AM-GM ta có:

\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)

\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)

Đẳng thức xảy ra khi \(x=y=1\)

20 tháng 7 2016

từ dòng cuối là sai rồi bạn à

Bạn bỏ dòng cuối đi còn lại đúng rồi

Ở tử đặt nhân tử chung căn x chung  rồi lại đặt căn x +1 chung

Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra 

rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

 

21 tháng 7 2016

cảm ơn bạn nha ok

16 tháng 7 2018

a

a: Ta có: \(\sqrt{x}\left(\sqrt{x}-3\right)-5\left(\sqrt{x}+3\right)\)

\(=x-3\sqrt{x}-5\sqrt{x}-15\)

\(=x-8\sqrt{x}-15\)

b: Ta có: \(3\left(\sqrt{x}+2\right)+\left(\sqrt{x}+3\right)\left(2-\sqrt{x}\right)\)

\(=3\sqrt{x}+6+2\sqrt{x}-x+6-3\sqrt{x}\)

\(=-x+2\sqrt{x}+12\)

c: Ta có: \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-5\left(\sqrt{x}-1\right)\)

\(=x-9-5\sqrt{x}+5\)

\(=x-5\sqrt{x}-4\)

d: Ta có: \(3\left(\sqrt{x}-2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3\sqrt{x}-6-x+1\)

\(=-x+3\sqrt{x}-5\)

Chứng minh BĐT phần a có dấu "=" nhé bạn!

a) Ta có : \(\sqrt{a^2}+\sqrt{b^2}\ge\sqrt{\left(a+b\right)^2}\)

\(\Leftrightarrow a^2+b^2+2\sqrt{a^2b^2}\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left|ab\right|\ge2ab\) ( luôn đúng )

Dấu "=" xảy ra khi \(ab\ge0\)

b) Áp dụng BĐT ở câu a ta có :

\(A=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(2022-x\right)^2}\)

\(=\sqrt{\left(2021-x\right)^2}+\sqrt{\left(x-2022\right)^2}\)

\(\ge\sqrt{\left(2021-x+x-2022\right)^2}=1\)

Dấu "= xảy ra \(\Leftrightarrow2021\le x\le2022\)

Vậy Min \(A=1\) khi \(\Leftrightarrow2021\le x\le2022\)