K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

Mình xin lỗi đề bài là Tìm min

9 tháng 6 2018

tìm min là gì

19 tháng 2 2020

\(ĐKXĐ:x\ne1\)

a) \(A=\frac{2\left(x+1\right)}{x^2+x+1}+\frac{2x^2-9x+4}{x^3-1}+\frac{1}{x-1}\)

\(\Leftrightarrow A=\frac{2\left(x+1\right)\left(x-1\right)+2x^2-9x+4+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\frac{2\left(x^2-1\right)+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\frac{2x^2-2+3x^2-8x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\frac{5x^2-8x+3}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\frac{\left(5x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow A=\frac{5x-3}{x^2+x+1}\)

b) Để \(A=1\)

\(\Leftrightarrow5x-3=x^2+x+1\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy để \(A=1\Leftrightarrow x=2\)

29 tháng 8 2017

bài 1 dễ òy tự lm mà nâng cao kiến thức ;))

Bài 2 ) làm mẫu ý b ; a vận dụng làm tương tự

Gọi \(A=\frac{x}{\left(x+100\right)^2}\)Ta có : \(A=\frac{x}{x^2+200x+10000}\)

\(\Leftrightarrow Ax^2+200Ax+10000A=x\)

\(\Leftrightarrow Ax^2+200Ax-x+10000A=0\)

\(\Leftrightarrow Ax^2+\left(200A-1\right)x+10000A=0\)

Để pt trên có nghiệm thì \(\Delta=\left(200A-1\right)^2-4.A.10000A\ge0\)

\(\Leftrightarrow40000A^2-400A+1-40000A^2\ge0\)

\(\Leftrightarrow-400A+1\ge0\Rightarrow A\le\frac{1}{400}\) có max là \(\frac{1}{400}\)

Dấu "=" xảy ra \(\Leftrightarrow x=100\)

Vậy \(A_{max}=\frac{1}{400}\) tại \(x=100\)

29 tháng 8 2017

Alo, cho hỏi cái bạn. cái tam giác là gì thế??? Giải giúp luôn bài 1 đi =((

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều

tách phần nguyên ra

dễ mà

mk ko thik lm đâu

đánh máy lâu lắm

có link face ko mk lm ra giấy rồi chụp ảnh gửi cho

12 tháng 11 2017
làm đi
NV
13 tháng 4 2019

a/

Nhận thấy ngay phương trình có 2 nghiệm \(\left[{}\begin{matrix}x=2019\\x=2018\end{matrix}\right.\)

- Với \(x>2019\Rightarrow\left\{{}\begin{matrix}x-2018>1\\x-2019>0\end{matrix}\right.\) \(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(x< 2018\Rightarrow\left\{{}\begin{matrix}x-2018< 0\\x-2019< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|>0\\\left|x-2019\right|>1\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|x-2019\right|^{2018}>1\Rightarrow\) pt vô nghiệm

- Với \(2018< x< 2019\) viết lại pt:

\(\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2018< 1\\0< 2019-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-2018\right|^{2019}< x-2018\\\left|2019-x\right|^{2018}< 2019-x\end{matrix}\right.\)

\(\Rightarrow\left|x-2018\right|^{2019}+\left|2019-x\right|^{2018}< x-2018+2019-x=1\)

\(\Rightarrow\) pt vô nghiệm

Vậy pt có đúng 2 nghiệm: \(\left[{}\begin{matrix}x=2018\\x=2019\end{matrix}\right.\)

NV
13 tháng 4 2019

b/

Thay \(x=0\) vào pt thấy không phải là nghiệm, chia cả tử và mẫu của các hạng tử vế trái cho x:

\(\frac{2}{x+\frac{1}{x}-1}-\frac{1}{x+\frac{1}{x}+1}=\frac{5}{3}\)

Đặt \(x+\frac{1}{x}=a\) phương trình trở thành:

\(\frac{2}{a-1}-\frac{1}{a+1}=\frac{5}{3}\)

\(\Leftrightarrow2\left(a+1\right)-\left(a-1\right)=\frac{5}{3}\left(a^2-1\right)\)

\(\Leftrightarrow5a^2-3a-14=0\) \(\Rightarrow\left[{}\begin{matrix}a=2\\a=-\frac{7}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{7}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-2x+1=0\\5x^2+7x+5=0\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=1\)

13 tháng 7 2017

Bài này lớp 7 cũng giải được. Cần gì \(\Delta\) bé Thiên An

\(P=\frac{x^2+2x+1}{x^2+1}=\frac{\left(2x^2+2\right)-x^2+2x-1}{x^2+1}\)

\(=2-\frac{\left(x-1\right)^2}{x^2+1}\le2\)

Vậy GTLN là 2 đạt được khi x = 1

12 tháng 7 2017

đề phải là: Tìm Min của P , biết :

\(P=\frac{x^2+2x+1}{x^2+1}\)

    \(=\frac{\left(x+1\right)^2}{x^2+1}\)

\(Luôn...có:...x^2\ge0,với...mọi....x\)\(\Rightarrow x^2+1>0\)

                            \(\left(x+1\right)^2\ge0,với...mọi...x\)

\(\Rightarrow P_{Min}=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

                                                           \(Vậy...P_{Min}=0...khi...x=-1\)