K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2018

Tìm max B biết B=15−4x−x2B=15-4x-x^2B=15−4x−x2

26 tháng 12 2018

DELL THỂ hiểu đc đề ghi đề như shi* vậy :(

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

1 tháng 9 2020

\(A=15-8x-x^2=-\left(x+4\right)^2+31\)

Vì \(\left(x+4\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+4\right)^2+31\le31\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+4\right)^2=0\Leftrightarrow x=-4\)

Vậy maxA = 31 <=> x = - 4

\(B=4x-x^2+2=-\left(x-2\right)^2+6\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow-\left(x-2\right)^2+6\le6\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Leftrightarrow x=2\)

Vậy maxB = 6 <=> x = 2

1 tháng 9 2020

a) \(A=15-8x-x^2=-\left(x^2+8x+16\right)-1\)

\(=-\left(x+4\right)^2-1\le-1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x+4\right)=0\Rightarrow x=-4\)

b) \(B=4x-x^2+2=-\left(x^2-4x+4\right)+6\)

\(=-\left(x-2\right)^2+6\le6\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(-\left(x-2\right)^2=0\Rightarrow x=2\)

c) Trang nghĩ nên sửa đề nhé:

\(C=-x^2-y^2+4x+4y+2\)

\(C=-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+10\)

\(C=-\left(x-2\right)^2-\left(y-2\right)^2+10\le10\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x-2\right)^2=0\\-\left(y-2\right)^2=0\end{cases}}\Rightarrow x=y=2\)

17 tháng 11 2018

\(\frac{5}{4x^2-4x+21}=\frac{5}{4x^2-2x-2x+1+20}=\frac{5}{\left(2x-1\right)^2+20}\)

\(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+20\ge20\)

dấu = xảy ra khi (2x-1)2=0

=> \(x=\frac{1}{2}\)

Vậy max \(\frac{5}{4x^2-4x+21}=\frac{5}{20}=\frac{1}{4}\)

a) Ta có: \(A=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1>0\forall x\)

b) Ta có: \(B=2x^2-2x+1\)

\(=2\left(x^2-x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

c) Ta có: \(C=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x-3\right)^2-6< 0\forall x\)

8 tháng 12 2017

Đặt t = x 2 – 4x ta được

t 2   +   8 t   +   15   =   t 2   +   3 t   +   5 t   +   15 = t(t + 3) + 5(t + 3) = (t + 5)(t + 3)

 

=   ( x 2   –   4 x   +   5 ) ( x 2   –   4 x   +   3 )   =   ( x 2   –   4 x   +   5 ) ( x 2   –   3 x   –   x   +   3 ) =   ( x 2   –   4 x   +   5 ) ( x ( x   –   3 )   –   ( x   –   3 ) )     =   ( x 2   –   4 x   +   5 ) ( x   –   1 ) ( x   –   3 )

 

Vậy số cần điền là -3

 

Đáp số cần chọn là: A

9 tháng 8 2020

a.\(\left(4x-1\right)-\left(4x+1\right).\left(x-2\right)=12\)

\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)-12=0\)

\(\Leftrightarrow4x-1-4x^2+7x+2-12=0\)

\(\Leftrightarrow-4x^2+11x-11=0\)

\(\Rightarrow4x^2-11x+11=0\)

\(\Leftrightarrow\left(2x\right)^2-2.2x.\frac{11}{4}+\frac{11^2}{4^2}-\frac{11^2}{4^2}+11=0\)

\(\Leftrightarrow\left(2x-\frac{11}{4}\right)^2+\frac{55}{16}=0\)( VÔ LÝ )

VẬY KHÔNG CÓ GIÁ TRỊ NÀO CỦA x THỎA MÃN PT ĐÃ CHO

b. \(\left(2x-3\right).\left(2x+1\right)-\left(2x-2\right)^2=15\)
\(\Leftrightarrow4x^2-4x-3-4x^2+8x-4-15=0\)

\(\Leftrightarrow4x-22=0\)\

\(\Leftrightarrow x=\frac{11}{2}\)

VẬY PT CÓ NGHIỆM x= 11/2

9 tháng 8 2020

a) \(\left(4x-1\right)-\left(4x+1\right)\left(x-2\right)=12\)

\(\Leftrightarrow4x-1-\left(4x^2-7x-2\right)=12\)

\(\Leftrightarrow4x-1-4x^2+7x+2=12\)

\(\Leftrightarrow4x^2-11x+11=0\)( Pt vô nghiệm )

b) \(\left(2x-3\right)\left(2x+1\right)-\left(2x-2\right)^2=15\)

\(\Leftrightarrow\left(4x^2-4x-3\right)-\left(4x^2-8x+4\right)=15\)

\(\Leftrightarrow4x=22\)

\(\Leftrightarrow x=\frac{11}{2}\)

20 tháng 7 2017

A=x2-4x+7

= x2-4x+4+3

= (x-2)2+3

Vì (x+2)2>0

Nên (x-2)2+3>/3

Vậy MAX của A=3 khi x-2=0 => x=2

NV
23 tháng 12 2022

Đặt \(x^2-4x=t\)

\(\Rightarrow t^2-8t+15=0\)

\(\Leftrightarrow t^2-3t-5t+15=0\)

\(\Leftrightarrow t\left(t-3\right)-5\left(t-3\right)=0\)

\(\Leftrightarrow\left(t-3\right)\left(t-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=5\\t=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4x=5\\x^2-4x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=0\\x^2-4x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-5x-5=0\\x^2-4x+4-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x+1\right)-5\left(x+1\right)=0\\\left(x-2\right)^2-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)\left(x-5\right)=0\\\left(x-2-\sqrt{7}\right)\left(x-2+\sqrt{7}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=5\\x=2+\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\)