Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta có bất phương trình x2- 3x+ 2≤ 0 khi và chỉ khi 1≤ x≤ 2
Yêu cầu bài toán tương đương với bất phương trình:
mx2-2( 2m+1) x+ 5m+3≤0 (1)
có nghiệm x: 1≤ x≤ 2
+ Ta đi tìm m để bất phương trình (1) vô nghiệm trên S
Tức là bpt f( x) = mx2-2( 2m+1) x+ 5m+3< 0 (2)
đúng với mọi x ∈ S
+ Nếu m= 0 (2) trờ thành: -2x+ 3≤0 hay x> 3/2 nên (2) không đúng với mọi x ∈ S
+ Nếu m≠ 0 tam thức f(x) có hệ số a= m, biệt thức ∆’ = -m2+m+ 1
Bảng xét dấu:
\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-1=\dfrac{-x^2+x+3}{\left(x+1\right)^3}\)
\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x^2+x+3}{\left(x+1\right)^3}-3\)
\(\Leftrightarrow\sqrt{5m^2-2m-2}+m-4=\dfrac{-x\left(x+2\right)\left(3x+4\right)}{\left(x+1\right)^3}\ge0\) ; \(\forall x\in\left(-1;0\right)\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(\sqrt{5m^2-2m-2}\ge4-m\)
- Với \(m\ge4\) BPT luôn đúng
- Với \(m< 4\Leftrightarrow5m^2-2m-2\ge m^2-8m+16\)
\(\Leftrightarrow2m^2+3m-9\ge0\)
Vậy \(\left[{}\begin{matrix}m\le-3\\m\ge\dfrac{3}{2}\end{matrix}\right.\)
Để pt có 2 nghiệm trái dấu \(\Leftrightarrow ac< 0\)
a/ \(1\left(m+1\right)< 0\Rightarrow m< -1\)
b/ \(-3\left(4-m^2\right)< 0\Leftrightarrow m^2-4< 0\Rightarrow-2< m< 2\)
c/ \(\left(m-1\right)\left(m^2+4m-5\right)< 0\)
\(\Leftrightarrow\left(m-1\right)^2\left(m+5\right)< 0\Rightarrow m< -5\)
d/ \(\left(m+1\right)\left(m+1\right)< 0\Leftrightarrow\left(m+1\right)^2< 0\)
\(\Rightarrow\) Ko tồn tại m thỏa mãn
e/ \(2m\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow2m\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}-3< m< 0\\m>1\end{matrix}\right.\)
f/ \(4\left(2m^2-5m+2\right)< 0\Rightarrow\frac{1}{2}< m< 2\)
g/ \(\left(6-m\right)\left(-m^2-2m+3\right)< 0\)
\(\Leftrightarrow\left(6-m\right)\left(1-m\right)\left(m+3\right)< 0\Rightarrow\left[{}\begin{matrix}m< -3\\1< m< 6\end{matrix}\right.\)
h/ \(m\left(2m-1\right)< 0\Rightarrow0< m< \frac{1}{2}\)
\(\Leftrightarrow\left(m^2-5m+6\right)x-m^2+2m=0\)
PT vô nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+6=0\\-m^2+2m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=3\\m=2\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=3\)