K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2019

Đặt \(sinx=a\), do \(x\in\left(-\frac{\pi}{4};\frac{\pi}{6}\right)\Rightarrow a\in\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\)

Bài toán trở thành tìm m để \(a^2-2a-m=0\) có nghiệm thuộc \(\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\)

\(\Leftrightarrow f\left(a\right)=a^2-2a=m\)

\(f'\left(a\right)=2a-2=0\Rightarrow a=1\)

\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left(-\frac{\sqrt{2}}{2};\frac{1}{2}\right)\Rightarrow f\left(\frac{1}{2}\right)< f\left(a\right)< f\left(-\frac{\sqrt{2}}{2}\right)\)

\(\Rightarrow-\frac{3}{4}< f\left(a\right)< \frac{1+2\sqrt{2}}{2}\)

\(\Rightarrow-\frac{3}{4}< m< \frac{1+2\sqrt{2}}{2}\)

30 tháng 1 2019

24 tháng 10 2019

Đáp án C

Để phương trình có một nghiệm duy nhất thuộc 0 ; π thì

NV
22 tháng 12 2020

\(\Leftrightarrow1-2sin^2x+\left(2m-3\right)sinx+m-2=0\)

\(\Leftrightarrow2sin^2x-\left(2m-3\right)sinx-m+1=0\)

\(\Leftrightarrow2sin^2x+sinx-2\left(m-1\right)sinx-\left(m-1\right)=0\)

\(\Leftrightarrow sinx\left(2sinx+1\right)-\left(m-1\right)\left(2sinx+1\right)=0\)

\(\Leftrightarrow\left(2sinx+1\right)\left(sinx-m+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-\dfrac{1}{2}\\sinx=m-1\end{matrix}\right.\)

Pt có đúng 2 nghiệm thuộc khoảng đã cho khi và chỉ khi:

\(\left\{{}\begin{matrix}m-1\ne-\dfrac{1}{2}\\-1\le m-1\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\0\le m\le2\end{matrix}\right.\)

27 tháng 10 2021

1, 

Nếu m = 0, phương trình có tập nghiệm là S = R, thỏa mãn yêu cầu bài toán

Nếu m ≠ 0 phương trình tương đương

cos2x - sin2x - sin2x = 0 ⇔ cos2x = sin2x, luôn có nghiệm trên R

Vậy m nào cũng sẽ thỏa mãn ycbt