K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2015

ghét mí cái bài này :"<<

3 tháng 2 2021

Thay m=2 vào HPT ta có: 

\(\left\{{}\begin{matrix}\left(2-1\right)x-2y=6-1\\2x-y=2+5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-4y=10\\-3y=3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)

Vậy HPT có nghiemj (x;y) = (3;-11)

3 tháng 2 2021

nghiệm là (3;-1) nhé

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

30 tháng 9 2015

Ta nhận thấy nếu \(x_0\)  là nghiêm của phương trình thì \(1-x_0\)  cũng là nghiệm. Để phương trình có nghiệm duy nhất thì \(x_0=1-x_0\to x_0=\frac{1}{2}\to m=\sqrt[4]{\frac{1}{2}}+\sqrt[4]{\frac{1}{2}}+\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{2}}=2\sqrt[4]{\frac{1}{2}}+2\sqrt{\frac{1}{2}}\)
Vậy \(m=\sqrt[4]{8}+\sqrt{2}.\)

24 tháng 7 2021

mn giúp em gấp

24 tháng 7 2021

Ta có :

\(|x^2-2mx+1|=x+1 \\ \Leftrightarrow x^2-2mx+1=x+1 (x\geq -1) (1)\\ \ hoặc \ x^2-2mx+1=-x-1 ( x< -1) (2)\)

TH1: pt (1) tương đương:

\(x^2-x(2m+1)=0 \\ \Leftrightarrow x=0 (thỏa\ mãn) \ hoặc \ x=2m+1\)

Để pt có nghiệm duy nhất <=> 2m+1  < -1 <=> m<-1

TH2: pt (2) tương đương:

\(x^2-x(2m-1)+2=0\)

\(\Delta = (2m-1)^2-4.2=4m^2-4m-7\)

+) Nếu pt có nghiệm duy nhất 

<=> \(m=\frac{1+2\sqrt{2}}{2} \ hoặc \ m=\frac{1-2\sqrt{2}}{2}\)

*) \(m=\frac{1+2\sqrt{2}}{2} \Rightarrow x = \sqrt{2} \) (loại vì căn 2 >-1 nên pt vô nghiệm) 

*) \(m=\frac{1-2\sqrt{2}}{2} \Rightarrow x=-\sqrt{2}\) (thỏa mãn)

+) Nếu pt có 2 nghiệm x1, x2 sao cho x1 < -1 < = x2

<=> (x1+1)(x2+1) >=0 và x1+x2 >-2

<=> P + S + 1 >=0 và S>-2

Delta > 0 <=> \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)

Theo viet ta có : S = 2m-1 ; P = 2 

=> P + S + 1 =2m-1 + 1+ 2 >= 0 <=> m >= -1 

Và S = 2m-1 > -2 <=> m > -1/2 

<=> m> -1/2  kết hợp \(m>\frac{1+2\sqrt{2}}{2} \ hoặc \ m<\frac{1-2\sqrt{2}}{2}\)

<=> \(m>\frac{1+2\sqrt{2}}{2} \)

Vậy \(m>\frac{1+2\sqrt{2}}{2} ; m=\frac{1-2\sqrt{2}}{2} ; hoặc \ m< -1\)

27 tháng 9 2015

Đặt \(\sqrt{x+1}=a;\sqrt{3-x}=b\) (a ;b \(\ge\) 0)

=> a+ b2 = 4   (1)

PT <=> a + b = m   (2)

Để PT đã cho có nghiệm duy nhất <=> hệ pt (1)(2) có duy nhất 1 nghiệm (a; b) và a; b \(\ge\) 0 

(-) a; b \(\ge\) 0 <=> a+ b \(\ge\) 0 và a.b \(\ge\) 0 <=> m \(\ge\) 0 và ab = \(\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\frac{m^2-4}{2}\) \(\ge\) 0 

<=> m \(\ge\) 0 và m2 - 4 \(\ge\) 0  (**) 

(-) Từ (2) => b = m - a . Thay vào (1) ta được :  a2 + (m - a)= 4 <=> 2a2 - 2am + m2 - 4 = 0   (*)

Để hệ có 1 nghiệm (a; b) với a; b \(\ge\) 0 <=> (*) có duy nhất 1 nghiệm \(\ge\) 0 hoặc (*) có 2 nghiệm trái dấu

+) (*) có nghiệm duy nhất <=> \(\Delta\)' = 0 <=> m2 - 2(m- 4) = 0 <=> m2 = 8 <=> m = \(2\sqrt{2}\) hoặc m = - \(2\sqrt{2}\)

khi đó, (*) có nghiệm là a = m => m \(\ge\) 0 

Vậy m = \(2\sqrt{2}\) thỏa mãn (**)

+) (*) có 2 nghiệm phân biệt trái dấu <=> (m- 4)/2 < 0 <=> m2 - 4 < 0 

Đối chiếu với điềm kiện (**) => m = \(\phi\)

Vậy Với m = \(2\sqrt{2}\) thì PT đã chp có nghiệm duy nhất 

3 tháng 12 2016

1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)

\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)

\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)

Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)

Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.

Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)

3 tháng 12 2016

cậu lm đc bài 2 câu a ko.. mk còn mỗi câu đấy