Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy nếu \(x_0\) là nghiêm của phương trình thì \(1-x_0\) cũng là nghiệm. Để phương trình có nghiệm duy nhất thì \(x_0=1-x_0\to x_0=\frac{1}{2}\to m=\sqrt[4]{\frac{1}{2}}+\sqrt[4]{\frac{1}{2}}+\sqrt{\frac{1}{2}}+\sqrt{\frac{1}{2}}=2\sqrt[4]{\frac{1}{2}}+2\sqrt{\frac{1}{2}}\)
Vậy \(m=\sqrt[4]{8}+\sqrt{2}.\)
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
1/ \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=x+\sqrt{\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}}\)
\(=x+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=x+\left|\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right|=\left(x+\frac{1}{4}\right)+\sqrt{x+\frac{1}{4}}+\frac{1}{4}\)
\(=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
\(\Rightarrow m=\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2\)
Để pt trên có nghiệm thì \(\hept{\begin{cases}m>0\\\sqrt{m}-\frac{1}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>0\\m\ge\frac{1}{4}\end{cases}}\Leftrightarrow m\ge\frac{1}{4}\)
Vậy với \(m\ge\frac{1}{4}\) thì pt trên có nghiệm.
Phương trình trên chỉ có một nghiệm thôi nhé, đó là \(x=m-\sqrt{m}\) với \(m\ge\frac{1}{4}\)
Đặt \(\sqrt{x+1}=a;\sqrt{3-x}=b\) (a ;b \(\ge\) 0)
=> a2 + b2 = 4 (1)
PT <=> a + b = m (2)
Để PT đã cho có nghiệm duy nhất <=> hệ pt (1)(2) có duy nhất 1 nghiệm (a; b) và a; b \(\ge\) 0
(-) a; b \(\ge\) 0 <=> a+ b \(\ge\) 0 và a.b \(\ge\) 0 <=> m \(\ge\) 0 và ab = \(\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=\frac{m^2-4}{2}\) \(\ge\) 0
<=> m \(\ge\) 0 và m2 - 4 \(\ge\) 0 (**)
(-) Từ (2) => b = m - a . Thay vào (1) ta được : a2 + (m - a)2 = 4 <=> 2a2 - 2am + m2 - 4 = 0 (*)
Để hệ có 1 nghiệm (a; b) với a; b \(\ge\) 0 <=> (*) có duy nhất 1 nghiệm \(\ge\) 0 hoặc (*) có 2 nghiệm trái dấu
+) (*) có nghiệm duy nhất <=> \(\Delta\)' = 0 <=> m2 - 2(m2 - 4) = 0 <=> m2 = 8 <=> m = \(2\sqrt{2}\) hoặc m = - \(2\sqrt{2}\)
khi đó, (*) có nghiệm là a = m => m \(\ge\) 0
Vậy m = \(2\sqrt{2}\) thỏa mãn (**)
+) (*) có 2 nghiệm phân biệt trái dấu <=> (m2 - 4)/2 < 0 <=> m2 - 4 < 0
Đối chiếu với điềm kiện (**) => m = \(\phi\)
Vậy Với m = \(2\sqrt{2}\) thì PT đã chp có nghiệm duy nhất
Câu a. Giả sử có m thỏa mãn đề bài, khi đó sẽ có số \(a\ge0\)để \(\sqrt{1-x^2}=a\)hay \(1-x^2=a^2\)
Suy ra: \(x^2=1-a^2\).
Nếu a > 1 thì không có x thỏa mãn.
Nếu a = 1 thì x = 0 ( duy nhất).
Nếu \(0\le a< 1\)thì \(x=\sqrt{1-a^2}\)hoặc \(x=-\sqrt{1-a^2}\). Rõ ràng hai giá trị này là phân biệt.
Vậy chỉ khi a = 1 thì x = 0 duy nhất. Khi đó m = 3 .
Ngược lại thay m = 3 vào phương trình ta có: \(\sqrt{1-x^2}+2\sqrt[3]{1-x^2}=3.\)
Đặt \(1-x^2=a^6\), thay vào phương trình ban đầu ta có:
\(a^3+2a^2=3\Leftrightarrow\left(a-1\right)\left(a^2-a+3\right)=0\)
Vậy a = 1 hay \(1-x^2=1\)suy ra x = 0 là nghiệm duy nhất.
Câu b ta đặt: \(\sqrt{x}+\sqrt{1-x}=a\)sau đó bình phương hai vế lên ta được 1 phương trình bậc hai theo tham số a.
Dùng điều kiện \(\Delta=0\)ta sẽ tìm được a.
ĐKXĐ:\(x\ge1\)
Đặt : \(\sqrt[4]{x+1}=a;\sqrt[4]{x-1}=b\left(a,b\ge0\right)\Rightarrow\hept{\begin{cases}\sqrt{x+1}=a^2\\\sqrt{x-1}=b^2\end{cases}............}\)
Khi đó pt đã cho có dạng \(a^2-mb^2+2ab=0.\)(*)
Coi(*) là phương trình bậc 2 ẩn a.
\(\Delta'_a=b^2+mb^2\)
Pt đã cho có nghiệm khi và chỉ khi pt (*) có nghiệm
\(\Rightarrow\Delta'_a\ge0\Leftrightarrow b^2+mb^2\ge0\Leftrightarrow b^2\left(m+1\right)\ge0\Leftrightarrow m\ge-1\)
ghét mí cái bài này :"<<