Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-2\left(m+1\right)x^2-\left(2m+5\right)x+10+12m=0\)
<=> \(\left(x-2\right)\left(x^2-2mx-5-6m\right)=0\)
<=> \(\orbr{\begin{cases}x=2\\x^2-2mx-5-6m=0\left(1\right)\end{cases}}\)
Để phương trình ban đầu có 3 nghiệm phân biệt <=> phương trình (1) có 2 nghiệm phân biệt khác 2
<=> \(\hept{\begin{cases}\Delta'=m^2+5+6m>0\\2^2-2m.2-5-6m\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\in\left(-\infty;-5\right)v\left(-1;+\infty\right)\\m\ne-\frac{1}{10}\end{cases}}\)
Đặt x^2 = t \(\ge\)0
phương trình trở thành: \(t^2+mt+4=0\)(1)
Phương trình ban đầu có 4 nghiệm phân biệt <=> phương trình (1) có hai nghiệm phân biệt dương
<=> \(\hept{\begin{cases}\Delta>0\\-\frac{b}{a}>0\\\frac{c}{a}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2-16>0\\-m>0\\4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2>16\\m< 0\end{cases}}\Leftrightarrow m< -4\)
Kết luận:...
Câu 1:Ta có:
a) \(\left|x-3\right|=5\Leftrightarrow\left[{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b) \(\left|2x+3\right|=2.\left|4-x\right|\)
+)Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le x\le4\)
Khi đó \(2x+3=2\left(4-x\right)\Leftrightarrow2x+3=8-2x\Leftrightarrow4x=5\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\ge0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow x\ge4\)
Khi đó: \(2x+3=2\left(x-4\right)=2x-8\Leftrightarrow0x=-11\left(vl\right)\)
+) Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\ge0\end{matrix}\right.\) \(\Leftrightarrow x\le\dfrac{-3}{2}\)
Khi đó: \(-\left(2x+3\right)=2.\left(4-x\right)\Leftrightarrow-2x-3=8-2x\left(vl\right)\)
+)Xét \(\left\{{}\begin{matrix}2x+3\le0\\4-x\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-3}{2}\\x\ge4\end{matrix}\right.\) \(\left(vl\right)\)
Vậy...
c) ĐKXĐ : \(3-x\ge0\Leftrightarrow x\le3\)
+)Xét \(x^{^2}-3x+1\ge0\)
\(\Leftrightarrow x^2-3x+1=3-x\Leftrightarrow x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1=3\Leftrightarrow\left(x-1\right)^2=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(tm\right)\\x=1-\sqrt{3}\left(tm\right)\end{matrix}\right.\)
+)Xét \(x^{^2}-3x+1\le0\)
\(\Leftrightarrow-\left(x^2-3x+1\right)=3-x\)
\(\Leftrightarrow x^2-3x+1=x-3\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(tm\right)\)
Vậy...
Câu 2:
Ta có:
Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có một nghiệm là \(x=-3\)
\(\Rightarrow\)Phương trình \(\left(x+3\right)\left(x^2-2x+m-1\right)=0\) có ba nghiệm phân biệt khi và chỉ khi \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\)
Ta có: \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt khi và chỉ khi \(\text{△}>0\Leftrightarrow8-4m>0\Leftrightarrow m< 2\)
Gọi \(x_1\) và \(x_2\) là 2 nghiệm của phương trình \(x^2-2x+m-1=0\).Theo hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-2}{1}=2\\x_1x_2=\dfrac{m-1}{1}=m-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=2-x_2\\\left(2-x_2\right).x_2=m-1\end{matrix}\right.\)
Nếu \(x_2\ne-3\) thì \(m-1\ne-15\Leftrightarrow m\ne-14\).
Do vai trò của \(x_1\) và \(x_2\) là như nhau nên \(x^2-2x+m-1=0\) có 2 nghiệm phân biệt và khác \(-3\) khi và chỉ khi: \(\left\{{}\begin{matrix}m< 2\\m\ne-14\end{matrix}\right.\)
TH1: m=2/3
Pt sẽ là -2(2/3-1)x+2/3-1=0
=>2/3x-1/3=0
=>x=1/2(loại)
Th2: m<>2/3
Δ=(2m-2)^2-4(3m-2)(m-1)
=4m^2-8m+4-4(3m^2-5m+3)
=4m^2-8m+4-12m^2+20m-12
=-8m^2+12m-8
Để PT có hai nghiệm phân biệt thì Δ>0
=>\(m\in\varnothing\)
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)