Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx+m-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx+m-2=0\)
\(\Leftrightarrow2\left(m-1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m-1}\)
Vì \(2>0\)
\(\Rightarrow m-1>0\)
\(\Rightarrow m>1\)
ĐKXĐ : \(x\ne-5;-m\)
\(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\left(1\right)\)
\(\Leftrightarrow\dfrac{\left(x-m\right)\left(x+m\right)+\left(x+5\right)\left(x-5\right)}{\left(x+5\right)\left(x+m\right)}=2\)
\(\Leftrightarrow x^2-m^2+x^2-25=2x^2+2xm+10x+10m\)
\(\Leftrightarrow2xm+10x+m^2+10m+25=0\)
\(\Leftrightarrow2x\left(m+5\right)=-\left(m+5\right)^2\)
\(\Leftrightarrow x=\dfrac{-\left(m+5\right)}{2}\)
PT \(\left(1\right)\) VN \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-\left(m+5\right)}{2}=-5\\\dfrac{\left(-m+5\right)}{2}=-m\end{matrix}\right.\)
Lời giải:
$x^2-9=0\Leftrightarrow x=\pm 3$
Để PT vô nghiệm thì:
\(\left\{\begin{matrix} 2.3+m=0\\ 2(-3)+m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=6\\ m=-6\end{matrix}\right.\) (vô lý, $m$ không thể đồng thời nhận 2 giá trị cùng lúc)
Do đó không tồn tại $m$ để PT vô nghiệm.