\(\left|\dfrac{x^2+x+4}{x^2-mx+4}\right|\le2\)

Với mọi x thuộc R

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

\(bpt\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}\right)^2-2^2\le0\)

\(\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}-2\right)\left(\dfrac{x^2+x+4}{x^2-mx+4}+2\right)\le0\left(1\right)\)

\(bpt\) \(đúng\forall x\in R\Leftrightarrow x^2-mx+4\ne0\)

\(hay:x^2-mx+4=0\) \(vô\) \(nghiệm\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow m^2-16< 0\Leftrightarrow-4< m< 4\)(1)

\(\Rightarrow x^2-mx+4>0\left(\forall x\in R\right)\)

\(\left\{{}\begin{matrix}x^2+x+4>0\\x^2-mx+4>0\end{matrix}\right.\)\(\Rightarrow\dfrac{x^2+x+4}{x^2-mx+4}+2>0\left(\forall x\in R\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow\left(\dfrac{x^2+x+4}{x^2-mx+4}-2\right)\le0\)

\(\Leftrightarrow\dfrac{x^2+x+4-2x^2+2mx-8}{x^2-mx+4}\le0\)

\(\Leftrightarrow-x^2+x\left(1+2m\right)-4\le0\)

\(\Leftrightarrow x^2-x\left(2m+1\right)x+4\ge0\)

\(\Leftrightarrow\Delta\le0\Leftrightarrow\left(2m+1\right)^2-16\le0\Leftrightarrow\dfrac{-5}{2}\le m\le\dfrac{3}{2}\)(2)

từ (1)(2)\(\Rightarrow\dfrac{-5}{2}\le m\le\dfrac{3}{2}\)

28 tháng 1 2021

toán lớp 10 á

2 tháng 1 2022

Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)

Vì \(x^2+x+4>0,\forall x\inℝ\)

nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)

\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)

\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)

1 tháng 4 2020

a, \(f\left(x\right)=-x^2+mx+m+1\)

Để f(x) \(\le0\) \(\forall x\in R\)\(a=-1< 0\)

\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)

\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)

b, Để hàm số y xác định \(\forall x\in R\)

\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)

NV
1 tháng 4 2020

a/ Do \(a=-1< 0\)

\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)

\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)

\(\Rightarrow m=-2\)

b/ Để hàm số xác định với mọi x

\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)

- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn

- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)

Vậy \(0\le m< 2\)

NV
19 tháng 4 2020

\(\Leftrightarrow\left|\frac{x^2-mx+4}{x^2+x+4}\right|\ge\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}\frac{x^2-mx+4}{x^2+x+4}\ge\frac{1}{2}\\\frac{x^2-mx+4}{x^2+x+4}\le-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2\left(x^2-mx+4\right)\ge x^2+x+4\\2\left(x^2-mx+4\right)\le-x^2-x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\left(2m+1\right)x+4\ge0\left(1\right)\\3x^2-\left(2m-1\right)x+12\le0\left(2\right)\end{matrix}\right.\)

Xét (2), do \(a=3>0\) nên ko tồn tại m để (2) thỏa mãn với mọi x

Xét (1), để BPT đúng với mọi x

\(\Leftrightarrow\Delta\le0\Leftrightarrow4m^2+4m-15\le0\)

\(\Rightarrow-\frac{5}{2}\le m\le\frac{3}{2}\)

10 tháng 2 2018

a) tử x^2 -8x +20 =(x-4)^2 +4 >0 mọi x => cần

mẫu <0 với mọi x

cần m<0

đủ (m+1)^2 -m(9m+4) <0

<=> m^2 +2m -1 >0

del(m) =1 +1 =2

m <=(-1 -can2)/2

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này

NV
5 tháng 6 2020

a/ \(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta=\left(3+m\right)^2-8\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m^2-2m+1\le0\end{matrix}\right.\) \(\Rightarrow m=1\)

b/ - Với \(m=-1\Rightarrow-2x+2< 0\Rightarrow x>1\) (ko thỏa mãn)

Với \(m\ne-1\Rightarrow\Delta=\left(m-1\right)^2\ge0\) \(\forall m\)

Để \(f\left(x\right)< 0\) với mọi \(x< -1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1< 0\\-1< x_1< x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\\frac{2}{m+1}+\frac{m+3}{m+1}+1>0\\\frac{m+3}{m+1}>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -1\\2m+6< 0\\3m+5< 0\end{matrix}\right.\) \(\Rightarrow m< -3\)