Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x+2y=3m+3\\4x-3y=m-10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
\(x^2-y^2=\left(m-1\right)^2-\left(m+2\right)^2=-6m-3=m-1\)
\(\Leftrightarrow m=-\frac{2}{7}\).
a) Thay m=-3 vào hẹ pt ta được:
\(\hept{\begin{cases}-3x+2y=1\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-6x+4y=2\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-4x=5\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{4}\\y=\frac{-11}{8}\end{cases}}\)
Vậy hệ pt có nghiệm (x,y) =( ...) khi m=-3
b) \(\hept{\begin{cases}mx+2y=1\\2x-4y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2mx+4y=2\\2x-4y=3\left(1\right)\end{cases}}\)
\(\Rightarrow2mx+2x=5\)
\(\Leftrightarrow2x\left(m+1\right)=5\) (*)
Để hệ pt có nghiệm duy nhất <=> (*) có nghiệm duy nhất \(\Leftrightarrow m\ne-1\)
Khi đó (*) có nghiệm duy nhất \(x=\frac{5}{2m+2}\)(2)
Thay (2) vào (1) ta được:
\(\frac{10}{2m+2}-4y=3\)
\(\Leftrightarrow4y=\frac{2-3m}{m+1}\)
\(\Leftrightarrow y=\frac{2-3m}{4m+4}\)
Ta có: \(x-3y=\frac{7}{2}\)
\(\Leftrightarrow\frac{5}{2m+2}-\frac{6-9m}{4m+4}=\frac{7}{2}\)
\(\Leftrightarrow\frac{10}{4m+4}-\frac{6-9m}{4m+4}=\frac{7}{2}\)
\(\Leftrightarrow\frac{4+9m}{4m+4}=\frac{7}{2}\)
\(\Rightarrow28m+28=8+18m\)
\(\Leftrightarrow m=-2\)(tm)
Vậy m=-2 thì hệ có nghiệm duy nhất (x,y) thỏa mãn x-3y=7/2
\(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\)
a, Với \(m=3\) ta có:
\(\hept{\begin{cases}x+y=2\\2x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2-y\\2\left(2-y\right)+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
b, \(\hept{\begin{cases}x+y=2\\2x+my=5\end{cases}}\Leftrightarrow\hept{\begin{cases}2x+2y=4\left(1\right)\\2x+my=5\left(2\right)\end{cases}}\)
Ta lấy \(\left(1\right)-\left(2\right)\) ta được: \(y\left(2-m\right)=-1\)
Với \(m\ne2\) hpt có nghiệm duy nhất là: \(\hept{\begin{cases}y=-\frac{1}{2-m}\\x=2-\frac{-1}{2-m}=\frac{5-2m}{2-m}\end{cases}}\)
Ta có: \(\hept{\begin{cases}y>0\\x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\frac{1}{2-m}>0\\\frac{5-2m}{2-m}< 0\end{cases}}\) \(\Leftrightarrow2-m< 0\) hoặc \(\orbr{\begin{cases}5-2m>0.hoac.2-m< 0\\5-2m< 0.hoac.2-m>0\end{cases}}\)
\(\Leftrightarrow m>2\) hoặc \(\orbr{\begin{cases}2< m< \frac{5}{2}\\m< 2,m>\frac{5}{2}\end{cases}}\Leftrightarrow2< m< \frac{5}{2}\)
Vậy .............
Bạn Băng !
<=> \(2-m< 0\) và \(\orbr{\begin{cases}...\\...\end{cases}}\)
( không phải là " hoặc " )
a, Khi \(m=-1\)ta có HPT : \(\hept{\begin{cases}-x+y=-2\\x-y=0\end{cases}}\)
=> HPT vô nghiệm
b, \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\x+m\left(2m-mx\right)=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2m-mx\\\left(1-m^2\right)x=-2m^2+m+1\end{cases}}\)( * )
HPT vô nghiệm
<=> ( * ) vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}1-m^2=0\\-2m^2+m+1\end{cases}}\ne0\)
<=> m = 1 hoặc m = -1 mà m khác 1 và -1/2
<=> m = -1