K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2023

loading...  

13 tháng 3 2023

\(a,\sqrt{x^2-5x-1}=\sqrt{x-1}\)

Bình phương 2 vế pt , ta có :

\(x^2-5x-1=x-1\)

\(\Rightarrow x^2-5x-x=-1+1\)

\(\Rightarrow x^2-6x=0\)

\(\Rightarrow x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Thay lần lượt các giá trị trên vào pt, ta thấy \(x=6\) (thỏa)

Vậy pt có tập nghiệm \(S=\left\{6\right\}\)

13 tháng 3 2023

loading...  

NV
27 tháng 1 2021

Với \(m=-1\) ktm

Với \(m\ne-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(3m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m-1\right)\left(-2m-4\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m>1\)

NV
22 tháng 12 2022

Hàm xác định trên \(\left[2;3\right]\) khi và chỉ khi:

\(x^2-2x-m>0;\forall x\in\left[2;3\right]\)

\(\Rightarrow x^2-2x>m;\forall x\in\left[2;3\right]\)

\(\Rightarrow m< \min\limits_{\left[2;3\right]}\left(x^2-2x\right)\)

Xét hàm \(f\left(x\right)=x^2-2x\) trên \(\left[2;3\right]\)

\(-\dfrac{b}{2a}=1\notin\left[2;3\right]\)

\(f\left(2\right)=0\) ; \(f\left(3\right)=3\)

\(\Rightarrow\min\limits_{\left[2;3\right]}\left(x^2-2x\right)=0\)

\(\Rightarrow m< 0\)

22 tháng 12 2022

Em cảm ơn anh ạ! 

Anh giúp em câu này nữa nhá anh em ra -4a^2 

https://hoc24.vn/cau-hoi/cho-hinh-thang-vuong-abcd-duong-cao-ab-2a-day-lon-bc-3a-day-nho-ad-2a-tinh-tich-vo-huong-vecto-ab-vecto-cd.7396640395536

NV
6 tháng 3 2021

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

11 tháng 10 2023

sao lại phải =0