K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

Gọi x0 là nghiệm chung của hai phương trình

thì x0 phải thỏa mãn hai phương trình trên:

Thay x = x0 vào hai phương trình trên ta được

x 0 2 + m x 0 + 1 = 0 x 0 2 + x 0 + m = 0

⇒ (m – 1)x0 + 1 – m = 0

⇔ (m – 1)(x0 – 1) = 0 (*)

Xét phương trình (*)

Nếu m = 1 thì 0 = 0 (luôn đúng)

hay hai phương trình trùng nhau

Lúc này phương trình x2 + x + 1 = 0

vô nghiệm nên cả hai phương trình đều vô nghiệm.

Vậy m = 1 không thỏa mãn.

+) Nếu m ≠ 1 thì x0 = 1

Thay x0 = 1 vào phương trình x02 + mx0 + 1 = 0 ta được m = −2

Thay m = −2 thì hai phương trình có nghiệm chung

Đáp án cần chọn là: D

22 tháng 3 2016

để 2 pt có ít nhất một nghiệm chung thì

x^2+2x+m=x^2+mx+2=>m=2

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

Nhiều thế, chắc phải đưa ra đáp thôi

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

NV
1 tháng 3 2022

\(\Delta'=\left(m-1\right)^2+\left(m+1\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Phương trình luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)

Phương trình có cả 2 nghiệm không lớn hơn 3 khi: \(x_1< x_2\le3\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)\ge0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9\ge0\\x_1+x_2< 6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-\left(m+1\right)+6\left(m-1\right)+9\ge0\\-2\left(m-1\right)< 6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\dfrac{2}{5}\\m>-2\end{matrix}\right.\) \(\Rightarrow m\ge-\dfrac{2}{5}\)

Vậy phương trình có ít nhất 1 nghiệm lớn hơn 3 khi: \(m< -\dfrac{2}{5}\)