Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoàng độ giao điểm của y= x^2 và y = 2x + 3 là nghiệm phương trình:
x^2 = 2x + 3 <=> x^2 -2x - 3 = 0 <=> x = 3 hoặc x = -1
Vì giao điểm của 3 đồ thị là điểm thuộc góc phần tư thứ 2 => hoành độ giao điệm x < 0
=> x = 3 loại
x = -1 thỏa mãn
Với x = -1 => y = 1
khi đó: 1 = ( 2m - 3) ( -1) + m - 5
<=> 1 = -2m + 3 + m - 5
<=> m = -3
Hoàng độ giao điểm của y= x^2 và y = 2x + 3 là nghiệm phương trình:
x^2 = 2x + 3 <=> x^2 -2x - 3 = 0 <=> x = 3 hoặc x = -1
Vì giao điểm của 3 đồ thị là điểm thuộc góc phần tư thứ 2 => hoành độ giao điệm x < 0
=> x = 3 loại
x = -1 thỏa mãn
Với x = -1 => y = 1
khi đó: 1 = ( 2m - 3) ( -1) + m - 5
<=> 1 = -2m + 3 + m - 5
<=> m = -3
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x+2m+3=2x+1\)
=>\(\left(m-1\right)x-2x=1-2m-3\)
=>\(x\left(m-3\right)=-2m-2\)
=>\(x=\dfrac{-2m-2}{m-3}\)
\(y=2x+1=\dfrac{2\cdot\left(-2m-2\right)}{m-3}+1=\dfrac{-4m-4+m-3}{m-3}=\dfrac{-3m-7}{m-3}\)
Để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ nhất thì
\(\left\{{}\begin{matrix}m-1\ne2\\\dfrac{-2m-2}{m-3}< 0\\\dfrac{-3m-7}{m-3}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\left(5\right)\\\dfrac{m+1}{m-3}>0\left(1\right)\\\dfrac{3m+7}{m-3}< 0\left(2\right)\end{matrix}\right.\)
(1); \(\dfrac{m+1}{m-3}>0\)
TH1: \(\left\{{}\begin{matrix}m+1>0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m>3\end{matrix}\right.\)
=>m>3
TH2: \(\left\{{}\begin{matrix}m+1< 0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m< 3\end{matrix}\right.\)
=>m<-1
Vậy: \(m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\)(3)
(2): \(\dfrac{3m+7}{m-3}< 0\)
TH1: \(\left\{{}\begin{matrix}3m+7>0\\m-3< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{7}{3}\\m< 3\end{matrix}\right.\)
=>\(\dfrac{-7}{3}< m< 3\)
TH2: \(\left\{{}\begin{matrix}3m+7< 0\\m-3>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>3\\m< -\dfrac{7}{3}\end{matrix}\right.\)
=>Loại
Vậy: \(-\dfrac{7}{3}< m< 3\)(4)
Từ (3),(4),(5) suy ra \(\left\{{}\begin{matrix}m\ne2\\-\dfrac{7}{3}< m< 3\\m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne2\\m\in\left(-\dfrac{7}{3};-1\right)\end{matrix}\right.\)
=>\(m\in\left(-\dfrac{7}{3};-1\right)\)
Xét pt hoành độ giao điểm:
(m - 3)x + 2m - 4 = -x + 5
\(\Leftrightarrow\) mx - 3x + 2m - 4 = -x + 5
\(\Leftrightarrow\) m(x + 2) = 2x + 9
\(\Leftrightarrow\) m = \(\dfrac{2x+9}{x+2}\)
Vì 2 đường thẳng cắt nhau tại 1 điểm nằm trong góc phần tư thứ 1
\(\Rightarrow\) x > 0
\(\Leftrightarrow\) 2x + 9 > 9; x + 2 > 2
\(\Rightarrow\) \(\dfrac{2x+9}{x+2}>\dfrac{9}{2}\)
\(\Leftrightarrow\) m \(>\dfrac{9}{2}\)
Vậy \(m>\dfrac{9}{2}\)
Chúc bn học tốt!
Xét phương trình hoành độ giao điểm 2 đường thẳng trên ta có:
$2x-m-3=m-4$
$⇒x=\dfrac{2m-1}{2}$
Nên điểm đó có tọa độ $M(\dfrac{2m-1}{2};m-4)$
suy ra điểm đó nằm trong góc phần tư thứ (VI) của mặt phẳng
\(\left\{{}\begin{matrix}\dfrac{2m-1}{2}>0\\m-4< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m< 4\end{matrix}\right.\)
Mà $m∈Z$ nên \(m\in\left\{1;2;3\right\}\)
$m=1⇒M(\dfrac{1}{2};-3)$
$m=2⇒M(\dfrac{3}{2};-2)$
$m=3⇒M(\dfrac{5}{2};-1)$
Vậy \(m\in\left\{1;2;3\right\}\)thỏa mãn đề
Phương trình hoành độ giao điểm:
\(x+3=2x+m-1\Rightarrow x=4-m\)
\(\Rightarrow y=x+3=7-m\)
Giao điểm nằm ở góc phần tư thứ 2 khi: \(\left\{{}\begin{matrix}x< 0\\y>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4-m< 0\\7-m>0\end{matrix}\right.\) \(\Rightarrow4< m< 7\)